〈研究発表〉

流動床式ガス化溶融炉における排ガス CO, NOx 制御技術

江 口 $(a^{1}) , (P)$ 藤 $\mathbb{E}^{2} , \mathbf{k}$ 下 民 \mathbb{E}^{2} 上古閑 久 $\mathbb{R}^{2} ,$ 下 梨 \mathbb{Z}^{2}

1) ㈱神戸製鋼所

(〒651-2271 兵庫県神戸市西区高塚台1丁目5-5 E-mail:eguchi.torul@kobelco.com)

2) (株)神鋼環境ソリューション

(〒651-0086 兵庫県神戸市中央区磯上通2丁目2-21 E-mail:td.ito@kobelco-eco.co.jp)

概要

流動床式ガス化溶融炉は廃棄物のガス化, 燃焼, 溶融処理を一貫して行うプロセスであり, 廃棄 物の量的・質的変化によって運転状態は動的に変化する。著者らは時に運転員の手動介入を要した 排ガス CO, NOx 制御を自動化する技術を開発した。本技術は制御の核となる運転状態の推定機能を, 熟練運転員のノウハウをベースに大量の操業データから機械学習によって自動抽出する点を特徴と する。本発表では, 開発技術の特徴および実機における試験結果を報告する。

キーワード:ガス化溶融炉, CO, NOx, 機械学習, ビッグデータ 原稿受付 2016.6.30

EICA: 21(2 · 3) 152-156

1. はじめに

廃棄物処理プロセスにおける環境負荷低減,最終処 分場の延命化,リサイクル性向上を特徴とする流動床 式ガス化溶融プロセスは,2000年代以降に国内での 実用化が進み,当社グループも各地の商用炉で稼働実 績を得てきた。ガス化溶融炉の安定稼働のためには, 廃棄物の量的・質的変化によって変動する運転状態に 適応した,自動制御技術の開発が必要である。当社グ ループではこれまでに,ボイラや燃焼炉等の各プロセ スを対象とした自動制御技術を開発,実用化を達成し た¹⁾。その一方で,CO,NOxを始めとする規制物質の 抑制に関しては,それら排ガス特性の複雑さや,法令 による規制遵守の制約から,既存の制御システムに加 え,運転員による手動介入が必要となる場合があった。 以上の点に鑑み,当社グループではガス化溶融プロ

セスの排ガス CO, NOx 抑制に関する運転負荷軽減を 目的とした制御技術を開発した。本技術の特徴はこれ まで複雑とされてきた排ガス特性を,形式知に加えて, 過去の操業データを用いた機械学習技術によりモデル 化し,獲得した特性モデルの推定情報に基づき制御を 実行する点にある。本発表では,開発技術の概要およ び,実機プラントによる検証結果を報告する。

2. 制御システムの概要

2.1 流動床式ガス化溶融プロセスの CO, NOx 発生 メカニズム

流動床式ガス化溶融プロセスの概略図を Fig.1 に

示す。本プロセスでは,破砕ごみをガス化炉で低空気 比燃焼させてガス化し,続いて溶融炉で灰溶融可能な 温度(1200℃以上)まで高温燃焼させる。各燃焼プロセ スにより生成・除去された不燃物や金属,スラグ等は リサイクルされ,燃焼後の排熱はボイラで回収され電 力として所内電源,売電等に活用される。熱回収後の 排ガスは集塵,脱硝等のプロセスを経て,最終的に環 境規制物質が規制値以下の状態で大気中に放出される。

Fig. 1 Outline of Gasification and Melting Process

CO, NOx といった規制物質は、各燃焼プロセスに おけるごみ(燃料)と助燃空気の不均衡によって発生 する。通常運転時は自動制御システムによって,ごみ の質的・量的な変動に応じて適切な空気量がガス化炉, 溶融炉へ供給される。そのため,燃焼プロセスは安定 化し, CO, NOx 濃度を規制値以下に維持できる。

ところが,既存システムの範疇を超えたごみ質や量 の変動が時として起こり,ごみと空気の不均衡な燃焼 状態が形成され,CO,NOxの過剰発生を引き起こす ことがある。その際,運転員の手動介入によって燃焼 状態を改善し,CO,NOx抑制が図られてきた。

2.2 CO, NOx 制御技術の概要

開発技術は、CO, NOx 抑制に関する手動介入の自動化を目的に、プロセス情報と発生メカニズムから推定した CO, NOx 発生状況の推定結果を基に空気量を制御して、CO, NOx の抑制を図る。

Fig.2 に示すように、開発技術を搭載した「CO, NOx 制御システム」は CO, NOx の2種類の制御ロ ジックから構成される。各ロジックにはガス化炉の砂 層温度や炉頂圧,溶融炉空気比を始めとする燃焼特性 に関する計測情報を入力とし,溶融炉の上流側の一次 空気量,下流側の二次空気量の操作指令値を出力とす る。計測情報をもとに、過去の操業データと機械学習 手法(決定木アルゴリズム²⁾)で求めた排ガス特性モ デルを用いて燃焼状態を推定し,その状態に応じて各 空気量を制御する。一次/二次空気量を操作量に選ん だ根拠は, CO, NOx の発生原因となるごみと空気の 不均衡解消に両操作が有効な点による。

Fig. 2 Structure of the Proposed CO/NOx Control System

開発システムの動作を以下に説明する。CO, NOx 制御ロジックは一定周期で実行され,各周期で制御が 必要な場合だけ,既存の制御システムに代わり制御を 実行する。制御の必要有無は,各ロジックに内蔵され た「CO/NOx 発生予測モデル」が現時点の運転状態 をもとに,将来の CO, NOx の発生を予測する。CO/ NOx の発生が予測されると,該当するロジックが空 気量の操作指令値を算出し,所望の空気量が燃焼炉内 に供給される。次節より,各ロジックの詳細を述べる。

3. CO, NOx 制御技術の詳細

3.1 CO 制御ロジック

ガス化溶融プロセスにおける CO ガスは, 燃焼時の 非定常な事象によって一時的に燃焼炉内の酸素が不足 することで発生し, 局所的な増加(ピーク)の特性を 示す。CO 制御ロジックは, 上記事象に関するプロセ ス情報と前述の予測モデルから CO ピーク発生を予測 した場合に, 一次・二次空気量指令値を所定の値に変 更する。なお, 予測モデルは決定木学習で抽出された If-then ルールベースの形式を取る。

燃焼プロセスにおける CO ピークの発生要因は, Fig.3 に示した ① ボイラ上部 O₂ 濃度の急落や, ② ガス化炉炉頂圧の一時的な増加といった形式知で与え られる。なお, Fig.3 では各プロセス値を 0~1 の範 囲にスケーリングしている(以降のグラフも同様)。

Fig. 3 Mechanisms of CO Generation in Gasification and Melting Proceses

開発技術では,形式知による因果律から以下の形式 で記述されるピーク発生予測ルールを定義した。

『時刻 t から T₁遡った期間における以下3種類の
特徴量が、定義された閾値条件(上下限値)を満
足する場合、時刻 t から将来 T₂ に渡る期間に
CO ピークが発生』
〈特徴量〉
i)ボイラ上部 O₂ 濃度の期間内最小値
ii)ガス化炉炉頂圧の期間内最大値
ii)ボイラ上部 O₂ 濃度変化率の期間内最小値

上記形式のルールを得るために、過去の操業データ に対して、時刻 $t-T_1 \sim t$ の期間の特徴量情報(入力変 数)と、期間 $t \sim t + T_2$ の期間のピーク発生有無(出 力変数/分類クラス)が紐付いたデータセットを作成 し、決定木を学習させた。学習の結果、特徴量の閾値 判定の組合せから CO ピークの発生有り/無しを予測 するルール群が得られ、CO 制御ロジックへは分類ク ラス「ピーク発生有り」を予測するルールが予測モデ ルとして組み込まれる。

3.2 NOx 制御ロジック

NOx ガスは主に溶融炉の酸素量が過剰となること で発生し,溶融炉へ供給される空気の割合を示すプロ セス情報である溶融炉空気比と強い相関を持つ。 NOx 制御ロジックの構築にあたり,NOx 発生に最も 支配的な溶融炉空気比を主に,他の因子を含む **Table 1** の 12 項目の特性因子を考慮した。操業デー タより抽出した特性因子情報を入力変数とし,NOx 特性(分類クラス:(A)閾値以上/(B)閾値未満)を出 力変数として紐付けたデータセットを作成し,決定木 を学習させた。

 $Table \ 1 \quad {\rm Considered} \ {\rm Factors} \ {\rm to} \ {\rm Develop} \ {\rm NOx} \ {\rm Control} \ {\rm Logic}$

\geq	項目	備考
1	溶融炉空気比(-)	測定プロセス情報から取得
2	ガス化炉空気量(kNm ³ /h)	
3	排ガス流量(kNm3/h)	
4	砂層温度(℃)	
5	ガス化炉出口温度(℃)	
6	溶融炉炉頂温度(℃)	
7	溶融炉絞部温度(℃)	
8	ボイラニ次燃焼室温度(℃)	
9	溶融炉絞部-二次燃焼室温度比率(-)	No.7と9の比率を計算
10	溶融炉炉頂-二次燃焼室温度比率(-)	No.6と9の比率を計算
11	砂層−溶融炉温度履歴指標1(-)	No.4~7の昇温変化分の総和
12	砂層−溶融炉温度履歴指標2(-)	No.4~7の昇温変化分の分散

なお,決定木学習で獲得したルール群は,ルールの 分類クラス毎に分割し,後述の目的別に使用する。

NOx 制御ロジックの動作は CO 制御ロジックと同 様, NOx 特性予測モデル (クラス(A)の分類ルール 群)による予測を経て, ルール適合時に操作量を決定 する。ただし CO 制御ロジックでは操作量を一意に決 定するのに対し, NOx 制御ロジックでは操作による 燃焼プロセスへの影響を最小限に抑えるため, 現在の 運転状態に最も近い目標状態をクラス(B)の分類 ルール群から抽出し, 操作量を決定する点で動作が異 なる。次節では, NOx 特性予測後の操作量決定方法 を説明する。

3.3 NOx 制御ロジックの操作量決定方法

NOx 制御ロジックにおける操作量決定では,事前 準備として,前述のデータセットをクラス(B)の各 ルールで分類評価する。前提として,ルール*j*に分類 されたデータkの入力変数 $e_{x_{i,j,k}}(i: 入力変数の添字),$ ルールjに分類されたデータ数 e_{K_j} とおくと,各ルー ルを代表する入力変数値 $\bar{x}_{i,j}$ は,ルール毎の変数値の 平均として下式(1)で計算される。

$$\bar{x}_{i,j} = \frac{1}{K_j} \sum_{k=1}^{K_j} x_{i,j,k} \qquad \cdots (1)$$

求めた $\bar{x}_{i,j}$ を,ルールの集合Jにおいて式(2a),(2b), (2c)で標準化し,ルール代表点 $\overline{X}_{i,i}$ を計算する。

$$\overline{X}_{i,j} = \frac{\overline{x}_{i,j} - \mu_i}{\sigma_i} \qquad \cdots (2a)$$

$$\mu_i = \frac{1}{|J|} \sum_{j \in J} \bar{x}_{i,j} \qquad \cdots (2b)$$

$$\sigma_i = \sqrt{\frac{1}{|J|} \sum_{j \in J} (\bar{x}_{i,j} - \mu_i)^2} \qquad \cdots (2c)$$

ここで μ_{i} , σ_i は $\bar{x}_{i,j}$ のルール集合における平均,標準 偏差となる。こうして求まった代表点 $\overline{X}_{i,j}$ は「NOx が閾値以下となる代表的な運転状態の集合」を意味し, これが操作量を決定するうえでの目標状態となる。

次に,現在時刻 t における入力変数値 y_i(t) を式 (3a)で標準化したのちに,式(3b)によって各代表点 との重み付け近傍距離 d_{i,j}(t)を計算する。

$$Y_i(t) = \frac{y_i(t) - \mu_i}{\sigma_i} \qquad \cdots (3a)$$

$$d_{i,j}(t) = \sqrt{\sum_{i \in I} (Y_i(t) - \overline{X}_{i,j})^2 \cdot w_i} \qquad \cdots (3b)$$

ここで、 $Y_i(t) lay_i(t)$ を平均 0、分散 1 に標準化した 値、 w_i la変数毎に設定する重みパラメータ、I la入力 変数集合である。上式で得られた $d_{i,j}(t)$ について、入 力変数の最近傍となる代表点 $\overline{X}^*(t)$ を現在時刻の目 標値ベクトルとする。

最後に、目標値ベクトル $\overline{X}^{*}(t)$ の一成分である溶融 炉空気比目標値 $r_{goal}^{*}(t)$ および、現在時刻の一次・二 次空気量の測定値 $s'_{1}(t), s'_{2}(t)$ に対し、式(4a)、(4b)に よって一次・二次空気の操作量 $s_{1}(t), s_{2}(t)$ を計算する。

$$s_{1}(t) = \frac{C_{1}(t) \cdot (r_{goal}^{*} - C_{3}(t) - C_{2}(t) \cdot s_{2}^{'}(t)) + C_{2}(t)^{2} \cdot s_{1}^{'}(t)}{C_{1}(t)^{2} + C_{2}(t)^{2}} \cdots (4a)$$

$$s_{1}(t) = \frac{r_{goal}^{*} - C_{3}(t) - C_{1}(t) \cdot s_{1}(t)}{\cdots (4b)} \cdots (4b)$$

$$S_2(t) = \frac{\Gamma_{goal} - C_3(t) - C_1(t) - S_1(t)}{C_2(t)} \qquad \cdots (4b)$$

ここで $C_1(t)$, $C_2(t)$, $C_3(t)$ は, 次式(5a)~(5d)で与 えられる溶融炉空気比r(t)と一次、二次空気量 $s_1(t)$, $s_2(t)$ および,ボイラ上部 O_2 濃度ox(t),押込空気量 を始めとするその他空気量の総和 $s_{other}(t)$ との関係式 から導出した多項式の計算結果であり,式中のパラ メータ $a_1 \sim a_8$ は過去の操業データから最小二乗法に よって求めた値を使用した。

$$r(t) = C_1(t) \cdot s_1(t) + C_2(t) \cdot s_2(t) + C_3(t) \qquad \cdots (5a)$$

$$C_1(t) = a_4 \cdot + a_5 \cdot ox(t) \qquad \cdots (5b)$$

$$C_2(t) = a_6 \cdot + a_7 \cdot ox(t) \qquad \cdots (5c)$$

$$C_{3}(t) = a_{1} \cdot ox^{2}(t) + a_{2} \cdot ox(t) + a_{3} \cdot \sqrt{ox(t)}$$

+ $a_{4} \cdot s_{other}(t) + a_{5} \cdot ox(t) \cdot s_{other}(t) + a_{8}$...(5d)

Fig. 4 Mechanisims to Detemine Operation Inputs in NOx Control Logic

ー連の操作量計算を **Fig. 4** に図示すると,一次・ 二次空気量の空間上に引かれた式(5a)の目標状態の特 性直線に向かって, $s'_1(t), s'_2(t)$ の座標点から下ろし た垂線との交点が $s_1(t), s_2(t)$ となる。すなわち,常に 目標状態に向かうような空気量操作が実行される。

4. 実機プラントによる評価

開発した制御ロジックを,実機プラントにて評価した。本節では,各ロジックの検証結果について述べる。

4.1 CO 制御ロジックの動作検証

検証時に発生した CO ピークにおける, CO 制御ロ ジック動作の詳細を, Fig.5 に示す。ロジック動作信 号(0:停止,1:起動)のトレンドから,開発ロジッ クがピーク発生を数十秒前に検知し,一次・二次空気

Fig. 5 Trend of CO Control Logic Execution and Process Information

量を増加させており, 妥当な動作となっていることが わかる。

また,一定期間のロジック動作で観測されたピーク 発生時の CO 発生総量を,ロジック非動作時の評価結 果と共にプロットした図を Fig. 6 に示す。なお, Fig. 6 中の各プロットは個別の発生 CO ピークを意味する。 図の横軸はピーク発生前の O₂ 濃度の落ち込み (Fig. 3 の①)量を評価したもので,CO 総発生量と正の相 関を持つ。また,各軸数値は 0~1.4 の範囲にスケー リングした。Fig. 6 より,開発ロジック動作時の相関

Fig. 6 Comparison between cases where the Proposed CO Control Logic is Active or Not Active

Fig. 7 Test Result of NOx Control Logic (NOx Emission Trend)

近似直線(破線)は、非動作時のそれ(一点鎖線)よ りも全体的に右下へ位置しており、CO抑制効果を確 認できる。

4.2 NOx 制御ロジックの動作検証

NOx 制御ロジック適用時の排ガス NOx 濃度のトレンドを Fig.7 に示す。図中のハイライト部分がロジックを有効とした時間帯であり、その直前の時間帯との比較から、NOx トレンドの低減効果を確認できる。

5. おわりに

本発表では、流動床式ガス化溶融プロセスの排ガス

CO, NOx 抑制を目的とした制御技術を開発し,実機 プラントにおいてその有効性を確認した。今回は CO, NOx の各制御ロジック単体での性能評価に留まった が,今後は両者を併用したケースでの性能評価を重ね, 更なる性能向上を図っていく計画である。

参考文献

- 前田,友近,伊藤,他2名:ガス化溶融炉における予測制御 システムの開発,環境システム計測制御学会研究発表会予稿 集. Vol.9, No.2, pp. 201-204 (2004)
- 2) Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Boca Raton, FL : CRC Press. (1984)