〈研究発表〉

高い窒素除去速度 Anammox プロセスと汚泥特性についての研究

馬 海 元, 張 彦 隆, 北 條 俊 昌, 李 玉 友

東北大学大学院 工学研究科土木工学専攻

(〒980-8579 仙台市青葉区荒巻字青葉 6-6-06 E-mail: gyokuyu.ri.a5@tohoku.ac.jp)

概要

本研究では、AAFEB 反応槽における Anammox プロセスが高窒素負荷に適用する可能性を明ら かにするために、流入窒素負荷(NLR, nitrogen loading rate)を段階的に上昇されて 35℃で連続実 験を行い、各段階の運転状況、また比 Anammox 活性変化、汚泥特性を検討した。その結果、窒素 負荷が 50 gN/L/d の条件においても、TN (Total Nitrogen)除去率は 89.79±0.65% に達した。また、 窒素負荷が 50 gN/L/d の条件で、最大比 Anammox 活性(MSAA)は 0.85±0.05 gN/gVSS/d に達 した。反応槽内形成した Anammox グラニュールは良好な沈降性能を持ち、沈降速度は 167.0±18.1 m/h 以上に維持できた。AAFEB 反応槽は高窒素負荷に適する Anammox プロセスと考えられた。

キーワード: AAFEB, Anammox, 高い窒素負荷, 比 Anammox 活性 原稿受付 2016.8.22

EICA: 21(2 · 3) 68-71

1. はじめに

Anammox プロセスが 1990 年代オランダで発見さ れた後,新世代型窒素除去技術として注目を集めて いる。同プロセスは電力消費,温室効果ガス生成量 の削減や有機物炭素源の添加不要などの効果が期待 され,COD/N比の小さい排水の窒素除去に適するも のと考えられる^{1,2)}。過去 20 年間において,実規模の Anammox プラントの数は 100 基以上に増加した³⁾。

Anammox プロセスの高負荷の特徴を活かすために, 本研究室の先行研究では,Zhang らが高い微生物保 持能力,高い環境ストレス抵抗能力を許容できる新し い Anammox 付着 膜 膨 張 床 (Anammox attached film expended bed, AAFEB)を開発した⁴。AAFEB 反応槽に おいて,生物膜型システムとグラニュール型システム が結合され,新しいグラニュールはよりよい沈降性能 を有する。また,流出水の返送による希釈機能は高濃 度基質の阻害を制御できる。反応槽とバイオマスの特 性を利用して,運転安定性と最大処理能力の向上が期 待される。

本研究は、5Lの有効容積を持つ AAFEB 反応槽を 用いて連続実験を行い、高窒素負荷の条件におけるプ ロセスの運転状況、生物膜の特性変化を検討した。

2. 実 験 方 法

2.1 実験装置と運転条件

本研究に用いた AAFEB 反応槽の有効容積は5L であり,流出水の返送比は250%-300% に設定した。 流出水の返送によって,流入基質濃度を希釈するとと もに流体力学的せん断力によるバイオフィルムの強健 化,多孔化,不均一化を実現できる。反応槽の運転温 度はウォータジャケットに温水を循環させて 35℃に 制御した。人工排水は蠕動ポンプ(1分間 on,1分間 off)によって反応槽に供給された。基質は(NH₄)₂SO₄ と NaNO₂の形態で供給し,NH₄⁺:NO₂⁻のモル比は 運転状況によって調節した。TN 濃度は 313 mgN/L から 1040 mgN/L までの範囲で変動した。無機培地 と微量元素は Anammox 細菌の新陳代謝と増殖の栄 養物質として添加されていた。反応槽の pH は返送水 に 2‰~20‰硫酸の投入によって 7.8-8.5 の範囲に制 御された。

Fig.1 AAFEB 型担体流動床 Anammox システム

新規 Anammox グラニュールは嫌気消化汚泥と脱 窒汚泥の混合を植種汚泥として、嫌気グラニュール汚 泥を機能性担体として本研究室で1000日間以上連続 培養された。形成された Anammox グラニュールは **Fig.1**のように2層構造を有する:外層は Anammox バイオフィルムであり,中心はグラニュール汚泥から 形成した無機的顆粒である。グラフィック分析ソフト ImageJ (1.48v, USA)を用いて分析した結果によれ ば,グラニュールの平均粒径は2mmであり,バイオ フィルムの厚さは 0.1 mm-1.2 mm であった。

連続実験の運転期間は7段階に分けられ,各運転期 間の運転条件を**Table1**に示す。

印	期間(日)	運転条件					
+X R比		TN	R _{IS}	NLR	HRT	返送	
旧		(mgN/L)		(gN/L/d)	(h)	比	
Ι	1-30	313	1.32	5.0	1.50	2.5	
II	31 - 51	625	1.00	10.0	1.50	2.5	
III	52-72	625	1.20	15.0	1.00	2.5	
IV	73-103	625	1.20	20.0	0.75	2.5	
V	103 - 132	625	1.20	30.0	0.50	2.5	
VI	133 - 158	830	1.20	40.0	0.50	3.0	
VII	159 - 180	1040	1.20	50.0	0.50	3.5	

Table 1 期間別の運転条件

2.2 分析方法

流入水と流出水のサンプリングは2日間一回行い, 0.45 μ mのフィルターによってろ過して測定した。pH は pH メーターを用いて測定した。各窒素成分 (NH₄⁺-N, NO₂⁻-N and NO₃⁻-N) はキャピラリー電 気泳動 (Agilent 7100) によって測定した。Anammox グラニュール汚泥の VSS, SS の測定は標準方法に 従って行った。FA (free ammonia, 遊離アンモニア) 及び FNA (free nitrous acid, 遊離亜硝酸)の濃度は 窒素濃度, pH と温度によって計算した。

実験結果と考察

3.1 連続実験の運転状況

AAFEB 反応槽の連続運転の各条件における窒素負 荷,流入流出各態窒素濃度,実際流入のFA,FNA 濃度,窒素除去率を**Fig.2**に示す。各段階の平均 NH₄⁺-N,NO₂⁻-NとTN除去率を**Table2**に示す。 本研究の段階 I から段階 VII まで,流入窒素負荷を5 gN/L/d から 50 gN/L/d まで段階的に上昇させて連 続実験を行った。基質濃度の阻害を防ぐために,実際 に反応槽内に流入した窒素濃度は流出水の返送によっ て希釈し,全運転期間に NH₄⁺-NとNO₂⁻-Nの合計 濃度を 320 mgN/L 以下に維持した。段階 I において 窒素負荷 NLR が 5 gN/L/d の条件で流入 TN 濃度を 313 mgN/L (NH₄⁺:NO₂⁻=1:1.32) に設定して 30

Fig.2 連続運転の各条件における窒素負荷,流入流出各態窒素濃度,実際流入のFA,FNA濃度,窒素除去率

日間の連続運転期間に 98.41±1.07% の NH4+-N 除去 と 90.12±4.01% の NO₂⁻-N 除去ができ, TN 除去率 は 84.36±2.74% であった。基質 NH₄⁺: NO₂⁻ モル比 が1:1.32の条件で, NO₂⁻⁻Nの除去率は NH₄⁺-Nの 除去率より少なく, 流出水に 30 mg/L くらいの NO₂⁻-Nは残存していた。段階 II では、同じ HRT の条件で 流入基質濃度を 625 mgN/L (NH₄⁺: NO₂⁻=1:1) に 上昇させることによって窒素負荷を 10 gN/L/d に上 げた。20日間の連続運転の結果,NH4+-Nの除去率 は84.51±2.59%, NO₂⁻-Nの除去率は99.23±0.33%, TN 除去率は 83.69±1.52% であり、流出水に 40-70 mg/LのNH4⁺-Nは残っていた。段階 III から段階 V まで, TN 濃度を 625 mgN/L に維持しながら, 投入 NH₄⁺: NO₂⁻ モル比を1: 1.2 に設定した。その同時 に, HRT が 1.5 h から 0.5 h までの短縮によって投入 窒素負荷を 15 gN/L/d から 30 gN/L/d に上昇させた。 段階 III から段階 V まで、TN の除去は 88.44±0.69%、 88.61±1.40%, 87.54±2.49% と高い除去率であった。 流出水の NH₄⁺-N と NO₂⁻-N はそれぞれ 10 mg/L と 5 mg/L 以下に維持できた。段階 VI と段階 VII では、 TN 濃度をもっと高い値の 830 mgN/L と 1040 mgN/ Lに設定し, 窒素負荷を 40 gN/L/d と 50 gN/L/d に 上昇させた。TNの除去率はそれぞれ87.97±1.00% と89.79±0.66%に達した。

FA と FNA は Anammox プロセスの阻害要因であ ると報告されている。本研究室の先行研究の結果によ れば, FA 濃度が 30 mg/L 以下, FNA 濃度が 15 μ g/ L 以下に維持すると, Anammox 細菌への阻害を防ぐ ことができる⁴⁾。本研究の連続運転期間においては, 流出水の返送は流入基質濃度を希釈し,実際に反応槽 内に流入した FA 濃度はほぼ 30 mg/L 以下, FNA は 7 μ g/L 以下の低濃度であった。窒素負荷が 50 gN/L/ d と高く,基質濃度も 1040 mgN/L と高い条件におい ても安定した高い窒素除去率を実現できた。

Table 2	各段階に.	おける	運転状
---------	-------	-----	-----

	NLR (gN/L/d)	運転状況				
段階		NH4+-N	NO2 ⁻ N	TN		
		除去率 (%)	除去率 (%)	除去率(%)		
Ι	5.0	$98.41 {\pm} 1.07$	90.12 ± 4.01	84.36 ± 2.74		
II	10.0	$84.51 {\pm} 2.59$	99.23 ± 0.33	$83.69{\pm}1.52$		
III	15.0	$97.30{\pm}1.41$	$99.58 {\pm} 0.27$	$88.44{\pm}0.69$		
IV	20.0	96.83 ± 0.70	$99.21{\pm}0.26$	88.61 ± 1.40		
V	30.0	$97.54{\pm}1.26$	$99.21{\pm}0.62$	87.54 ± 2.49		
VI	40.0	$96.92{\pm}0.72$	$99.40{\pm}0.36$	$87.97 {\pm} 1.00$		
VII	50.0	$96.16{\pm}1.47$	$99.72{\pm}0.66$	$89.79{\pm}0.66$		

3.2 Anammox 活性実験結果と考察

SAA 試験は各段階の安定状態で行われた。段 階 I から段階 VII までの期間における Anammox 汚泥の比活性を Fig.3 に示す。SAA の値は植種 汚泥の量, Anammox 代謝経路で重要な酵素 HAO (hydroxylamineoxidoreductase) と HZO (hydrazine- oxidoreductase) や基質濃度などに影響 されている。いずれの段階においても基質濃度が阻害 濃度より低い時, SAA は基質濃度の上昇によって上 がった。基質濃度が阻害濃度より高い時, SAA は基 質濃度の上昇によって急激に低下した。Anammox 汚 泥の最も高い SAA は TN 濃度が 116 mgN/L から 464 mgN/L までの間に示した。窒素負荷が5gN/L/d から 50 gN/L/d に上昇させる過程において、MSAA (最大比 Anammox 活性) は段階 I の 0.37±0.20 gN/ gVSS/dから,段階 IIの 0.41±0.12 gN/gVSS/d,段 階 III の 0.42±0.04 gN/gVSS/d, 段階 IV の 0.61± 0.03 gN/gVSS/d, 段階 V の 0.68±0.07 gN/gVSS/d, 段階 VI の 0.78±0.08 gN/gVSS/d, 段階 VII の 0.85± 0.04 gN/gVSS/d に上がった。本研究において、高い 窒素負荷に応じて Anammox 細菌が増殖し、単位 VSS 当たりの Anammox 細菌の数量も多くなった。 また、各高さ汚泥の SAA の差も窒素負荷の向上に 従って小さくなった。NLR の上昇に伴う HRT の短 縮は反応槽内の上昇流速を高くさせ、AAFEB 反応槽 内の基質分布は均一になることをその原因として考え られる。

Fig.3 各段階における Anammox 汚泥の比活性

3.3 AAFEB 反応槽におけるグラニュール汚泥の性状

AAFEB 反応槽内に形成したグラニュール汚泥の性 状を Table 3 に示す。グラニュール汚泥は円形に近 く, 平均粒径は2mm ぐらいであった。平均 VSS 濃 度は窒素負荷の上昇に従って段階 Iの 49.8±6.8 g/L から段階 VII の 63.96±4.7 g/L に上昇した。VSS/SS 値は汚泥に揮発性浮遊物質が占める比率を示す。連続 実験の運転期間に、平均 VSS/SS も段階 I の 21.7± 2.8% から段階 VII の 63.2±2.5% に上昇した。AAFEB 反応槽内のグラニュール汚泥は良好な沈降性能を示し た。平均沈降速度は段階 Iの 306.4±27.3 m/h から段 階 VII の 167.0±18.1 m/h までの範囲にあった。沈降 速度の若干の低下する傾向は VSS/SS の上昇で引き起 こされたと考えられる。本研究に培養されたグラ ニュール汚泥の沈降速度は従来研究に報告された Anammox グラニュールの沈降速度の 60-140 m/h の 範囲より遥かに上回る⁵。この原因で, HRT の短縮 と流出水の返送によって反応槽内の上流速度が段階 I の1.49 m/h から段階 VII の 5.73 m/h に上昇しても、 反応槽内の Anammox バイオマスは良好な沈降性能

Table 3 各段階のグラニュール汚泥性質

		グラニュール特性					
段階	期間(日)	沈降速度	上流速度	平均 SS	平均 VSS	平均 VSS/SS	平均粒径
		(m/h)	(m/h)	(g/L)	(g/L)	(%)	(mm)
Ι	1-30	306.4±27.3	1.49	230.0±14.6	49.8±6.8	21.7±2.8	2.16
II	31-51	294.3±33.1	1.49	221.5±26.6	55.2±10.3	24.8±1.8	2.05
III	52-72	272.8±43.0	2.23	203.7±65.0	53.7±14.8	26.5±1.6	1.96
IV	73-103	267.4±22.1	2.97	207.6±59.8	59.7±9.8	28.9 ± 1.0	1.95
V	103-121	263.1±26.9	4.46	186.3±13.5	62.1±1.1	33.4±1.8	2.21
VI	133-158	197.0±17.0	5.10	136.7±18.7	73.2.6±8.7	53.6±1.4	2.16
VII	159-180	167.0±18.1	5.73	106.1±33.3	63.96±4.7	63.2±2.5	2.17

を持ち,運転期間に著しく流出されることがなかった。 4. ま と め

3.4 考察

Fig. 4 に各窒素負荷における NLP (Nitrogen Loading Potential), NRR (Nitrogen Removal Rate), MSAAとTN除去効率を示す。連続実験の運転期間においでは、TNの除去率は83.69±1.52%以上と高く,超高負荷NLRの50gN/L/dにおいても89.79±0.66%のTN除去率を維持できた。AAFEB反応槽は高負荷高効率型Anammoxプロセスと考えられる。MSAA試験の結果を基づいて計算したNLPは段階Iの18.77gN/L/dから段階VIIの61.30gN/L/d上昇した。NLPの結果はAAFEB反応槽が実際のNRRより高い窒素除去ポテンシャルを持つことを示す。実際運転する時、窒素投入負荷をNLPより低い値に設定することで、高窒素負荷条件においても高効率の窒素除去を実現することが可能である。

Fig.4 各窒素負荷における NLP, NRR, と TN 除去率

本研究は AAFEB 反応槽において連続実験を行った結果,以下の結論を得た。

- 180 日間の連続運転によって、NLR が 5 gN/ L/d から 50 gN/L/d まで上昇し、TN 除去率は 常に Anammox プロセスの理論最大 TN 除去 率の 89% に近い除去率を維持できた。
- (2) 窒素負荷の上昇に従い、Anammox 汚泥の MSAA は段階 I の 0.37±0.20 gN/gVSS/d から 段階 VII の 0.85±0.04 gN/gVSS/d に上がり、 基質濃度に対する耐性も高くなった。
- (3) AAFEB 反応槽に培養されたグラニュール汚泥 は従来の Anammox グラニュールと較べてよ り高い沈降性能を持ち,高い上流速度において も反応槽内の生物量を保持できる。

参考文献

- Ali, Muhammad and Okabe, Satoshi : Anammox-based technologies for nitrogen removal : advances in process start-up and remaining issues, *Chemosphere*, Vol. 141, pp. 144–153, 2015.
- 2) Jetten, M. S. M., Strous, M., van de Pas-Schoonen, K. T., Schalk, J., van Dongen, U. G. J. M., van de Graaf, A. A., Logemann, S., Muyzer, G., van Loosdrecht, M. C. M. and Kuenen, J. G.: The anaerobic oxidation of ammonium, *Fems Microbiology Reviews*, Vol. 22, No. 5, pp. 421-437, 1998.
- 3) Lackner, Susanne, Gilbert, Eva M, Vlaeminck, Siegfried E, Joss, Adriano, Horn, Harald, van Loosdrecht and Mark CM: Fullscale partial nitritation/anammox experiences — an application survey, *Water Research*, Vol. 55, pp. 292–303, 2014.
- 4) Zhang, Yanlong, Niu, Qigui, Ma, Haiyuan, He, Shilong, Kubota, Kengo, Li, Yu-You: Long-term operation performance and variation of substrate tolerance ability in an anammox attached film expanded bed (AAFEB) reactor, *Bioresource Technology*, Vol. 211, pp. 31-40, 2016.
- 5) Tang, C. J., Zheng, P., Wang, C. H., Mahmood, Q., Zhang, J. Q., Chen, X. G., Zhang, L. and Chen, J. W.: Performance of highloaded ANAMMOX UASB reactors containing granular sludge, *Water Research*, Vol. 45, No. 1, pp. 135–144, 2011.