〈研究発表〉

汚染土壌からのカドミウムの溶出にアナターゼが与える影響の定量的評価

鈴木祐麻^{1,2)}, 中瀬貴将¹⁾, 新苗正和¹⁾

¹⁾山口大学大学院 創成科学研究科 (〒755-8611 山口県宇部市常盤台 2-16-1) ²⁾山口大学 ブルーエナジーセンター (〒755-8611 山口県宇部市常盤台 2-16-1)

概要

本研究の目的は土壌に含まれるアナターゼが土壌からの Cd(II) の溶出に与える影響を定量的に 評価することである。吸着実験およびモデリングの結果,汚染土壌を作製した pH5.9 ではカオリナ イトは Cd(II) をイオン交換態として吸着すること,アナターゼはカオリナイトより高い Cd(II) 吸着性を示すこと,そしてアナターゼは Cd(II) を内圏錯体として吸着することが分かった。そし て溶出実験の結果,アナターゼは土壌からの Cd(II) の溶出性に大きな影響を与え,アナターゼを 多く含む土壌からは Cd(II) の溶出が少ないことが分かった。

キーワード:土壌汚染,カドミウム,アナターゼ,カオリナイト,溶出 原稿受付 2019.5.25

EICA: 24(2 · 3) 104–109

1. はじめに

カドミウム (Cd) による土壌汚染は重要な環境問 題である。例えば米国において, Cd は ATSDR (The Agency for Toxic Substances and Disease Registry)が発表したスーパーファンドサイトにおけ る全国優先リスト¹⁾の7位に登録されている。また, 我が国においては, 140 か所を超えるサイトが含有 基準 (150 mgCd/kg) あるいは溶出基準 (0.01 mgCd/L)を超過している²⁾。

土壌に含まれる金属酸化物が重金属の環境内挙動に 影響を与えることは幅広く知られた知見である。しか し、二酸化チタンが重金属を効果的に収着することが 報告^{3,4)}されているにも関わらず、土壌科学の研究の 多くは酸化鉄あるいは酸化マンガンに着目している。 その結果、土壌への重金属の収着、そして土壌からの 重金属の脱着における二酸化チタンの重要性を議論し た研究例は数少ない^{5,6)}。例えば, Payne ら⁵⁾はジョー ジアカオリナイトへのU(VI)の収着を調べ、U(VI) がジョージアカオリナイトに不純物として含まれてい るアナターゼに選択的に収着していることを報告した。 また、筆者ら⁶はデキシーカオリナイトへの Pb(II) の収着を調べ、Pb(II)が不純物として含まれている アナターゼに選択的に収着していることを報告した。 そして、デキシーカオリナイト中においては、酸化鉄 より多くの Pb(II) がアナターゼに収着していること を明らかにしている。これらの研究はアナターゼが土 壌中における重金属の挙動に大きな影響を与えること を示唆しているが、知見が十分に蓄積されていないの

が現状である。

これらの背景を踏まえ、本研究の目的は、土壌中に 含まれるアナターゼがデキシーカオリナイトからの Cd(II)の溶出に与える影響を定量的に評価すること である。デキシーカオリナイトとアナターゼへのCd (II)の吸着データを内圏錯体と外圏錯体を組み合わ せたモデルを用いてモデリングし、得られた錯体定数 を用いてCd(II)の溶出濃度を予測した。さらに、溶 出液に含まれる塩分濃度がCd(II)の溶出性に与える 影響を定量的に評価した。

2. 実験方法

デキシーカオリナイト (Kaolinite No. 7, Dixie Rubber Pit, Bath, SC) は (株) ニチカから購入した。ア ナターゼはシグマアルドリッチから購入した。これら の固体の BET 比表面積はデキシーカオリナイトが 24.9 m²/g でアナターゼが 9.4 m²/g である⁶⁾。特に明 記しない限り,他の試薬はナカライテスクあるいは富 士フィルム和光の特級グレードの試薬を用いた。

2.1 デキシーカオリナイトの滴定実験

3.0 gのデキシーカオリナイト (表面積として 75 m²) を 0.3 L の超純水の中に入れて十分に混合した。 なお,この超純水は 0.01 mol/L, 0.05 mol/L, あるい は 0.1 mol/L の NaNO₃を含む。HNO₃で pH を 3.0 に 調整した後に,窒素ガスでバブリングすることで $CO_2 \varepsilon$ 水溶液から取り除いた。その後, 0.5 mol/L あ るいは 1.0 mol/L の NaOH を少しずつ添加すること により, pH を 10.0 程度にまで徐々に上昇させた。 NaOH を添加するインターバルは, pH が安定するの に十分な 30 分とした。

2.2 Cd(II) の吸着実験

表面積として 15 m²あるいは 75 m²となるように固体(デキシーカオリナイトあるいはアナターゼ)を 50 mL のポリプロピレン容器に測り取った。その後, Cd (II) の濃度が 0.2 mmol/L あるいは 2 mol/L とな るように Cd (NO₃)₂·4H₂O を添加した水溶液を 30 mL 加えた。なお,この水溶液はバックグラウンドイオン として 0.001 mol/L,0.01 mol/L,あるいは 0.05 mol/L の NaNO₃を含む。そして,NaOH あるいは HNO₃水溶液を用いて pH を調整し,24 時間浸とうし た。24 時間後,遠心分離により固液分離を行い,0.2 μ m のメンブレンフィルターを用いてろ過を行うこと で得られたろ液の pH を測定した。さらに,原子吸光 光度計 AA-6200 (Shimadzu Corp., Kyoto, Japan)を 用いたフレーム法により Cd(II)の濃度を測定した。

2.3 人工汚染土壌の作製

カオリナイトとあらかじめ決められた量のアナター ゼを合計 400 g となるように測り取り, 1.78 mmol/L の Cd (NO₃) 2·4H₂O を添加した水溶液 2L と十分に混 合した。なお、この水溶液はバックグラウンドイオン として 10 mmol/L の NaNO3を含む。pH 自動滴定装 置を用いて混合物の pH を 5.9±0.1 に保ちながら 24 時間攪拌して Cd(II) を土壌に収着させ、24 時間後の 水相に含まれる Cd(II) 濃度を測定することで Cd(II) の含有量を算出した。本研究ではアナターゼの含有量 が異なる3種類の人工汚染土壌を作製したが、以後こ れらを "K", "K+1wt% A", そして "K+5wt% A" と表記する。例えば "K+1 wt% A" はアナターゼの 含有割合が1wt.%となるようにカオリナイトとアナ ターゼを混合した土壌に Cd(II) を収着させた汚染土 壌である。なお、収着後の水相に含まれる Cd(II) 濃 度を測定することで Cd(II)の土壌含有量を算出した 結果,これらの人工汚染土壌の Cd(II) 含有量は 480 mgCd/kg であった。

2.4 溶出試験

人工汚染土壌4gとHNO₃あるいはNaOH水溶液に よりpHを調節した溶出液40mLを混合し、6時間浸 とうした後に水相のpHと溶出したCd(II)の濃度を 測定した。なお、高濃度のCd(II)(>100 μ gCd/L) は原子吸光光度計AA-6200(Shimadzu Corp., Kyoto, Japan)を用いたフレーム法によりCd(II)濃度を測 定し、低濃度のCd(II)(<100 μ gCd/L)は原子吸光 光度計AA-7000F(Shimadzu Corp., Kyoto, Japan) を用いたファーネス法により測定した。

3. 吸着データのモデリング

滴定曲線と Cd(II) の吸着曲線は表面錯体およびイ オン交換反応を考慮したモデルにより解析を行った。 カオリナイトの吸着サイトに関する既存の報告⁷⁻⁹⁾に よると,カオリナイトには2種類の吸着サイトが存在 する。一つ目は可変電荷となるエッジ \equiv SOH(シラ ノール基あるいはアルミノール基)であり,二つ目は 永久電荷 \equiv X⁻である。そして吸着形態については, 一つ目の \equiv SOH には内圏錯体を形成することで吸着 し,二つ目の \equiv X⁻にはイオン交換態を形成すること で吸着するとされている。これらの文献情報を踏まえ, 本研究で考慮した反応は下記の通りである。

 \equiv SOH+ H⁺ \rightleftharpoons \equiv SOH₂⁺

$$K_{+} = \frac{[\equiv \text{SOH}_{2}^{+}]}{[\equiv \text{SOH}]\gamma_{\text{H}^{+}}[\text{H}^{+}]} \exp(\Psi F/RT)$$
(1)

$$\equiv$$
SOH \rightleftharpoons \equiv SO⁻+H

$$K_{-} = \frac{[\equiv \mathrm{SO}^{-}]\gamma_{\mathrm{H}} \cdot [\mathrm{H}^{+}]}{[\equiv \mathrm{SOH}]} \exp(-\Psi F/RT) \qquad (2)$$

$$\equiv$$
SOH+Cd²⁺ \rightleftharpoons \equiv SOCd⁺+H⁺

$$K_{\text{SOCd}} = \frac{[\equiv \text{SOCd}^+]\gamma_{\text{H}^+}[\text{H}^+]}{[\equiv \text{SOH}]\gamma_{\text{Cd}^{2+}}[\text{Cd}^{2+}]} \exp(\Psi F/RT) \quad (3)$$

$$\equiv \mathbf{X}^{-} \cdot \mathbf{H}^{+} + \mathbf{N}\mathbf{a}^{+} \rightleftharpoons \equiv \mathbf{X}^{-} \cdot \mathbf{N}\mathbf{a}^{+} + \mathbf{H}^{+}$$
$$K_{\mathbf{X}\mathbf{N}\mathbf{a}} = \frac{[\equiv \mathbf{X}^{-} \cdot \mathbf{N}\mathbf{A}^{+}]\gamma_{\mathbf{H}^{+}}[\mathbf{H}^{+}]}{[\equiv \mathbf{X}^{-} \cdot \mathbf{H}]\gamma_{\mathbf{N}\mathbf{a}^{+}}[\mathbf{N}\mathbf{a}^{+}]}$$
(4)

$$2 \equiv X^{-} \cdot H^{+} + Cd^{2+} \rightleftharpoons X_{2}^{2-} \cdot Cd^{2+} + 2H^{+}$$

$$K_{X_{2}Cd} = \frac{\left[\equiv X_{2}^{2-} \cdot Cd^{2+}\right] \gamma_{H}^{2-} [H^{+}]^{2}}{\left[\equiv X^{-} \cdot H^{+}\right]^{2} \gamma_{Cd^{2+}} [Cd^{2+}]}$$
(5)

ここで γ は水相における化学種の活量係数, ϕ は表 面ポテンシャル(V), Fはファラデェー定数(C/mol), R はガス定数(J/(mol K)), そして T は絶対温度(K) である。本研究では、2 つの可変電荷サイト(= SiOH と = AIOH)の区別はせず,さらに上述した反 応以外の反応,例えば(=SOH)₂Cd や =X⁻·Cd (OH)⁺も考慮しなかった。その理由は、これらの反 応を考慮してもフィッティングの精度が向上しなかっ たからである。

カオリナイトのデータのモデリングは,表面錯体モ デルの1種であり他のモデルに比べて比較的シンプル でパラメーターが少ない constant capacitance モデル に基づき、化学平衡計算ソフトウェア MINEQL+ Version 4.6¹⁰⁾ およびそのデータベースを用いて行っ た。まず滴定曲線をフィッティングすることにより $K_+, K_-, K_{XNa}, [\equiv SOH], [\equiv X^-], そしてキャパ$ シタンス *R*を決定した。そして, これらの値を Cd (II)の吸着曲線の解析に用いることで K_{socd}および *K*_{X2Cd}を決定した。アナターゼのデータのモデリング はカオリナイトと同様のアプローチで行ったが、下記 の2つの仮定の下でモデリングを行った。一つ目は =X⁻の有無に関する仮定である。下記に示すように, Cd(II)のアナターゼへの吸着はNaNO3濃度に依存し なかった。バックグラウンドイオンの濃度はイオン交 換で ≡X⁻に吸着する場合に大きな影響を与えるのに 対して、内圏錯体を形成することで ≡SOH に吸着す る場合には影響を与えない⁹⁾。つまり、Cd(II)の吸 着性が NaNO3濃度に依存しなかった本研究で取り 扱ったアナターゼの場合は、=X⁻を無視してもよい と考えられる。そして二つ目の仮定は K+, K-, そ して [≡SOH] の決定方法である。アナターゼの場 合はカオリナイトの場合とは異なり、滴定曲線の解析 からK+,K-,そして[≡SOH]の値を決定するの は困難であった。そのため、本研究では滴定曲線から これらの値を決定するのではなく、 文献11)に報告され ている値を用いた。そして,吸着曲線から K_{socd}を決 定した。

4. 結果および考察

4.1 カオリナイトの滴定実験および Cd(II) の吸着 実験データのモデリング

式(1),(2),(4)を用いて滴定曲線をモデリングした結果を **Fig.1**に,式(1)-(5)を用いて Cd(II)の吸着曲線をモデリングした結果を **Fig.2**および **Fig.3**

Fig. 1 Titration curves for kaolinite (10 g/L) with different NaNO₃ concentrations. Parameters used for the modeling analysis are listed in Table 1.

 Table 1
 Surface complexation model parameters used to model the experimental data

	Anatase	Kaolinite
Surface acidity constants ^a		
$LogK_+$	2.8 ^b	3.2
$Log K_{-}$	$-9.2^{\rm b}$	-9.2
Surface cation adsorption constants ^a		
${ m Log}K_{ m SOCd}$	0.1	-4.4
${ m Log}K_{ m XNa}$	—	-2.9
${ m Log}K_{ m X2Cd}$	_	-2.6°
Site density		
$[\equiv SOH]_{Total} (mmol/g)$	0.2^{d}	0.13
$[\equiv X^-]_{Total} (mmol/g)$	_	0.035
Others		
Specific surface area (m^2/g)	9.4°	24.9 ^e
Capacitance R (F/m ²)	1.2	1.2

^a Intrinsic constants at zero ionic strength

^b Sahai and Sverjensky, 1997¹¹⁾

^c Average value of 12 experimental conditions

 $^{\rm d}$ This value is calculated assuming a site density of 12.5 sites/nm $^{\rm 2 \ 11)}$

^e Suzuki et al., 2017⁶⁾

に示す。また、これらのモデリングで得られたパラ メーターを Table 1 にまとめる。Fig. 2 と Fig. 3 の比 較から、Cd(II)の吸着特性に関してデキシーカオリ ナイトとアナターゼには大きな違いが2つあることが 分かる。まず、アナターゼはデキシーカオリナイトに 比べて高いCd(II)吸着性を示し、その差は低pH領 域で特に大きかった。この結果は、土壌が酸性雨に曝 された際には、アナターゼの含有量が土壌全体の Cd (II)の吸着性/脱着性に大きな影響を及ぼすことを示 唆している。次に、Cd(II)のアナターゼへの吸着が NaNO₃濃度にほぼ依存しないのに対して、デキシー カオリナイトへの吸着は NaNO₃濃度に強く依存し, NaNO₃濃度が高くなるにつれて吸着性が低くなった。 バックグラウンドイオンの濃度はイオン交換で吸着す る場合に大きな影響を与えるのに対して、内圏錯体を 形成することで ≡SOH に吸着する場合には大きな影 響を与えない⁹⁾。つまり, Cd(II) の吸着性が NaNO₃ 濃度にほぼ依存しなかったアナターゼの場合は. =SOH との内圏錯体の形成が主な Cd(II) の吸着メ カニズムと結論づけることができる。その一方, Cd (II)の吸着性が NaNO₃濃度に強く依存したデキシー カオリナイトの場合は、=X-へのイオン交換反応が 無視できない吸着メカニズムである。しかし, Fig.2 (d) に顕著に表れているように、Cd(II) の吸着率は pH5.0-6.0の領域で一旦一定になり、pH が 6.0 以上で 再度上昇する傾向が得られた。このことは、デキシー カオリナイトの場合は pH 領域により異なる吸着メカ ニズムが発現していることを示唆している。実際、モ デリングの結果から. pH6.0 以下では = X⁻へのイオ ン交換反応が Cd(II) の主な吸着メカニズムであるが. pH6.0 以上では徐々に ≡SOH との内圏錯体の形成が

Fig. 2 Cd (II) adsorption edges on kaolinite with different NaNO₃ concentrations, kaolinite dosages, and initial Cd (II) concentrations. The K_{XCd} values used for modeling are also shown. For other parameters, the same values were used for all experimental conditions and are listed in Table 1.

Fig. 3 Cd (II) adsorption edges on anatase with different NaNO $_3$ concentrations, anatase dosages, and initial Cd (II) concentrations. The parameters used for modeling are listed in Table 1.

Fig. 4 Experimental and predicted concentrations of Cd (II) in the leaching solutions for kaolinite with different anatase content. The predicted values were calculated using the Cd(II) content in kaolinite (480 mgCd/kg) and surface complexation model parameters (Table 1). Predicted concentrations of Cd (II) for the leaching solutions containing 0.7 mol/L of NaCl are not shown because the Davies equation, used to calculate activity coefficients of ions in MINEQL+Version 4.6, can be applied to solutions with ionic strength up to 0.5 mol/L.

重要な吸着メカニズムとなることが分かった。

7 アナターゼ含有量が土壌からの Cd(II) の溶出 に与える影響

溶出液中の NaCl 濃度を 0 mol/L から海水に含まれ るおおよその NaCl 濃度である 0.7 mol/L まで変化さ せた場合の Cd(II) の溶出濃度にアナターゼ含有量が 与える影響を評価した結果を Fig.4 に示す。また、 Fig.4にはTable1にまとめたパラメーターを用いて 溶出濃度を計算した結果も合わせて示した。しかし, MINEQL+ では活量係数の計算に Davies の式を用い ており、この Davies の式が適用できるイオン強度の 範囲は 0.5 mol/L 以下であるため, NaCl 濃度を 0.7 mol/L とした場合(**Fig. 4(e**))には計算値は示して いない。まず、塩分濃度が Cd(II) の溶出濃度に与え る影響に着目すると、Cd(II)の溶出濃度はNaCl濃 度が増加するにつれて増加した。汚染土壌 K を例と して具体的に説明すると、NaCl を溶出液に加えな かった場合では pH5 における溶出濃度は 120 µg/L 程 度であったのに対して, NaCl 濃度を 0.5 mol/L ある いは 0.7 mol/L とした場合では 90% 以上の高い割合 に相当する 40.000 µg/L 以上の Cd(II) が溶出した。 これは, 6.0 以下の pH 領域ではイオン交換が Cd(II) のカオリナイトへの吸着メカニズムであることを踏ま えると妥当な結果である。次に、土壌に含まれるアナ ターゼの含有量が Cd(II) の溶出濃度に与える影響に 着目すると、アナターゼの含有量が増加するにつれて NaCl 濃度の影響は小さくなり、アナターゼを添加し た汚染土壌 K+1 wt% A および K+5 wt% A ではア ナターゼを添加していない汚染土壌 K より Cd(II)の 溶出濃度が大幅に低減されていることが分かる。これ は、カオリナイトの場合は Cd(II) がイオン交換態と

して吸着しているために溶出液に含まれる Na⁺によ り容易に脱着するのに対して,アナターゼの Cd(II) 吸着メカニズムは Na⁺とイオン交換しない内圏錯体 の形成であるために NaCl 濃度が増加してもアナター ゼの Cd(II) に対する吸着性が低下しないことが理由 である。また,一部のデータを除けば,実験で得られ た溶出濃度は計算で予測した溶出濃度より低かった。 本研究で示した予測溶出濃度は,式(1)-(5) が完全な 可逆反応と仮定して算出した値であるが,その仮定の 妥当性は証明できていない。例えば内圏錯体はイオン 交換態に比べて脱着性が低く,時に不可逆的に吸着す る¹²⁾ことが知られている。つまり,実験で得られた溶 出濃度が予測溶出濃度より低かった一要因として, Cd(II) の一部が不可逆的に土壌に吸着していること が挙げられる。

5. ま と め

アナターゼはデキシーカオリナイトより Cd(II) を 効果的に吸着し、その差は酸性領域にてより大きかっ た。デキシーカオリナイトの場合、pH6.0 以下では $\equiv X_2^{2^{-}} \cdot Cd^{2+}$ が主な Cd(II) の吸着存在形態であるが、 pH6.0 以上では \equiv SOCd⁺が主な吸着存在形態であっ た。また、アナターゼの場合は pH によらず主な吸着 存在形態は \equiv SOCd⁺であった。そして溶出実験の結 果、これらの吸着特性の違いにより、土壌に含まれる アナターゼは土壌からの Cd(II) の溶出を低減させる ことが分かった。

謝 辞

本研究の一部は公益財団法人鉄鋼環境基金,大阪湾 広域臨海環境整備センター,公益財団法人ソルト・サ イエンス研究財団研究助成(助成番号1905)および 科学研究費補助金(18H01571)の補助を受けて実施 した。ここに記して感謝の意を表す。

参考文献

- 1) The Agency for Toxic Substances and Disease Registry, 2017, Retrieved May 24, 2019, from https://www.atsdr.cdc.gov/ SPL/index.html
- 2) The Ministry of the Environment Government of Japan, 2018, Retrieved May 24, 2019, https://www.env.go.jp/en/water/ soil/sp.html
- 3) P. Liang, T. Q. Shi and J. Li: Nanometer-size Titanium Dioxide Separation/preconcentration and FAAS Determination of Trace Zn and Cd in Water Sample, Int. J. Environ. Anal. Chem., Vol. 84, No. 4, pp. 315–321 (2004)
- 4) K. E. Engates and H. J. Shipley : Adsorption of Pb, Cd, Cu, Zn, and Ni to Titanium Dioxide Nanoparticles : Effect of Particle Size, Solid Concentration, and Exhaustion, Environ. Sci. Pollut. Res., Vol. 18, No. 3, pp. 386–395 (2011)
- 5) T. E. Payne, J. A. Davis, G. R. Lumpkin, R. Chisari and T. D. Waite: Surface Complexation Model of Uranyl Sorption on Georgia Kaolinite, Appl. Clay Sci., Vol. 26, No. 1-4, pp. 151-162 (2004)

- 6) T. Suzuki, M. Okita, S. Kakoyama, M. Niinae, H. Nakata, H. Fujii and Y. Tasaka: Preferential Adsorption and Surface Precipitation of Lead (II) Ions onto Anatase in Artificially Contaminated Dixie Clay, J. Hazard. Mater., Vol. 338, pp. 482– 490 (2017)
- 7) P. W. Schindler, P. Liechti and J. C. Westall: Adsorption of Copper, Cadmium and Lead from Aqueous Solution to the Kaolinite/water Interface, Neth. J. Agr. Sci., Vol. 35, No. 3, pp. 219-230 (1987)
- P. Srivastava, B. Singh and M. Angove: Competitive Adsorption Behavior of Heavy Metals on Kaolinite, J. Colloid Interf. Sci., Vol. 290, No. 1, pp. 28-38 (2005)
- 9) X. Gu and L. J. Evans : Surface Complexation Modelling of Cd (II), Cu (II), Ni (II), Pb (II) and Zn (II) Adsorption onto Kaolinite, Geochim. Cosmochim. Acta, Vol. 72, No. 2, pp. 267– 276 (2008)
- MINEQL+Version 4.6: Equilibrium Modeling System. Environmental Research Software, 2007.
- N. Sahai and D. A. Sverjensky: Evaluation of Internally Consistent Parameters for the Triple-layer Model by the Systematic Analysis of Oxide Surface Titration Data, Geochim. Cosmochim. Acta, Vol. 61, No. 14, pp. 2801–2826 (1997)
- 12) D. L. Sparks. Environmental Soil Chemistry, 2nd ed.; Academic Press : California, U. S. A., 2003.