〈研究発表〉

太陽光強度の違いによる光触媒層/セラミック平膜ろ過の ウイルス様粒子の除去効果

介¹⁾. 丹 後 元 秀²⁾. 沈 本 間 亮 尚3). 竹 内 <u>侬</u>4) 齩 正 —⁵⁾ 昔 永杰⁶⁾. 西村文武⁷⁾. 新 明8) 島 井 壴 1) 京都大学大学院 工学研究科 (〒615-8540 京都市西京区京都大学桂 C-1-3-461 E-mail:homma.ryosuke.6j@kyoto-u.ac.jp) 2)(前) 京都大学大学院 工学科研究科附属 流域圏総合環境質研究センター (〒520-0811 滋賀県大津市由美浜1-2 E-mail:tango.motohide@gmail.com) (現) (株日水コン 3)(前)国立環境研究所琵琶湖分室 (〒520-0022 滋賀県大津市柳が崎 5-34 琵琶湖・環境科学研究センター 2F E-mail:s-shin@fc.ritsumei.ac.jp) (現) 立命館大学 理工学部 4) 京都大学大学院 工学科研究科附属 流域圏総合環境質研究センター (〒520-0811 滋賀県大津市由美浜1-2 E-mail:takeuchi.haruka.6m@kyoto-u.ac.jp) 5) ㈱明電舎 (〒141-6029 東京都品川区大崎2-1-1 E-mail:sameshima-s@mb.meidensha.co.jp) ⁶⁾(前)京都大学大学院 工学科研究科附属 流域圏総合環境質研究センター (〒520-0811 滋賀県大津市由美浜1-2 E-mail:wong.yongjie@kuas.ac.jp) (現) 京都先端科学大学 バイオ環境学部 "京都大学大学院 工学科研究科附属 流域圏総合環境質研究センター (〒520-0811 滋賀県大津市由美浜1-2 E-mail:nishimura.fumitake.3n@kyoto-u.ac.jp) 8) ㈱明電舎 (〒141-6029 東京都品川区大崎2-1-1 E-mail:arai-yo@mb.meidensha.co.jp) 概 要

安価かつ安全な水処理システムの構築を最終的な目標として、セラミック平膜上に光触媒層を形成させ、そこに太陽光を照射させる処理システムを考案した。本処理システムでは、促進酸化による強力な処理能力と太陽光利用による低コスト化を期待できる。また、小規模での運用が可能であり、オンサイト処理への適用にも可能性がある。本報では、基礎研究として、太陽光照射の違いによる光触媒層/セラミック平膜ろ過のウイルス除去効果を評価したので報告する。

キーワード:太陽光,光触媒,セラミック平膜,ウイルス様粒子 原稿受付 2023.8.2

EICA: 28(2 · 3) 85-89

1. はじめに

持続可能な開発目標(SDGs)の目標6に設定され ている通り,安全な水へのアクセスは国連においても 最重要課題の一つとされおり¹⁾,多くの取り組みがな されてきた。しかし,2020年にも9.9%(7.7億人) の人が,安全な飲み水を利用できない環境,あるいは 安全な飲み水を利用するために30分以上移動しなけ ればならない環境にいた²⁾。このような安全な水への アクセスが容易でない地域は発展途上国に多い。さら に,発展途上国の非都市部では,衛生的なインフラの 整備が,先進国や同国の都市部と比べても進んでいな い傾向にある²⁾。世界的に増え続ける人口と水資源の 偏在化により,国や地域によってはオンサイト方式の 水処理システムの導入が検討されている。オンサイト 方式の水処理システムの仕様は,生活排水や地下水, 河川などを原水として,飲料水・雑用水・修景用水・ 河川維持用水として供給する事例が報告されてい る³⁴⁾。しかしながら,これらのシステムにはウイル ス汚染の懸念が強く,ウイルスの制御が重要な課題と して残っている。特に,適切な水供給インフラが整備 されていない地域では,安全な水の供給が喫緊の課題 となっている。このような状況に対応するためには, 費用対効果に優れた技術であり,多様な病原微生物を 効率的に除去する方法が求められる。そこで,太陽光 と光触媒を組み合わせた水処理技術が,そのような要 件を満たす1つの選択肢として挙げられる。この技術 は強い酸化力と高い反応速度を持ち,効率的に・OH (ヒドロキシルラジカル)を生成し,非選択的に反応 を示す特徴を有している。光触媒を通じて自然エネル ギーである太陽光を活用することで,多種多様な有機 物や微生物などの汚染物質を効果的に分解・除去する ことが可能である。

以上のことから、著者らはセラミック平膜上に光触 媒層を形成させ、そこに太陽光を照射させる処理シス テム(以降本処理システム)を考案した。本処理シス テムでは、既往研究分野⁵⁾における TiO₂の固液分離の 課題を解決でき、促進酸化による強力な処理能力と太 陽光利用による低コスト化を期待できる。また、小規 模での運用が可能であり、オンサイト処理への適用の 可能性がある。さらにセラミック平膜処理(MF 膜: 孔径 0.1 μm)の導入により、膜孔径の違いから、病 原微生物である細菌や原虫等を膜分離し、ウイルスな どにターゲットを絞ることができる。本報では、基礎 的知見の収集の一環として、太陽光照射下におけるセ ラミック平膜上の光触媒層による・OH生成濃度およ びウイルス除去効を評価したので報告する。なお、水 処理技術のウイルスに対する有効性は大腸菌ファージ などの指標微生物を使うのが一般的であるが⁶⁻⁹⁾,培養 が困難、もしくは未知のウイルスに対する処理効果は 十分に評価できていない。そこで本研究では, · OH 暴露量からウイルスの不活化に関する考察を行った後. 従来の評価では対象外だったウイルスを管理できるよ うに下水処理水中のウイルス様粒子の総数に着目し、 処理による総数の変化を評価した。

2. 実験方法

2.1 · OH 生成効率の検討

2.1.1 DMSO 原水の調整

ジメチルスルホキシド(分子式:(CH₃)₂SO,分子 生物学用;富士フイルム和光純薬(株);以降 DMSO と 表記)を11.0 mg 分取し,濃度 141 µmol/L となるよ うに,超純水を用いて DMSO 水溶液を調整した。調 整後,直ちに使用しない場合は密栓し,5℃の冷蔵庫 内で保存し,一週間以内に使用した。

2.1.2 · OH 生成濃度と生成速度の推算方法

・OH の生成能力の試験は JIS R 1704¹⁰に準じて、
 DMSO と・OH の反応から分解生成物であるメタンスルホン酸(以降, MSA)が生成される(式1)。

$$(CH_3)_2SO+ \cdot OH+1/2O_2 \rightarrow CH_3SO_3H+ \cdot CH_3$$

式 1

本研究では、上式から反応で消費される・OHと生 成した MSA の物質量は等しいので、MSA を定量分 析することで、間接的に・OH の生成濃度を推算した。 MSA の濃度は液体クロマトグラフ UPLC (AQUITY, Waters) – タンデム質量分析計 MS/MS (Quattro micro API, Waters)を用い、絶対検量線法により定量し た。・OH の生成速度の算出方法は, 既報¹¹⁾に基づき, 擬一次反応と仮定し, 式2, 式3を用いて, 実験原水 と処理水中の MSA の濃度, 線速度から算出した。

$$C_0 \times LV_0 + K_{\cdot OH} = C_p \times LV_p \qquad \qquad \exists 2$$

C₀: ・OH(MSA)の初濃度 (M), LV₀:線速度 (m・s⁻¹), K_{・OH}: ・OH(MSA)の生成速度 (M・m・s⁻¹), C_p: ろ過後の・OH(MSA)の濃度 (M), LV_p: ろ過後の線 速度 (m・s⁻¹)

C₀は0mg/Lであることから,式3が導出される。

 $K_{\cdot OH} = C_p \times LV_p$ 式 3

2.2 ウイルス除去の検討

2.2.1 実験原水の調整

近畿圏のA下水処理場の最終沈殿池越流水を採水 し、これを孔径 0.2 μ m のポリカーボネートメンブレン(MERCK) でろ過して得られたろ液を実験原水と した。TOC 濃度および 7 種類の溶存イオン (F⁻, Cl⁻, Br⁻, NO₂⁻, NO₃⁻, PO₄³⁻, SO₄²⁻)の濃度は, TOC-300V (㈱三菱ケミカルアナリテック)とイオ ンクロマトグラフフィー (ThermoFisher Scientific) にて測定し、既往研究^{11,12}の二次処理水の同程度の濃 度条件であった。

2.2.2 ウイルス様粒子の計測方法

Sheng et al. の既報¹³を参考に, 採水した試料を直ち にグルタルアルデヒドによる化学固定を行い(終濃度 2%), ウイルス様粒子の計測まで-30℃で冷凍保存 した。孔径 0.02 μ m の Anodisc フィルタ(Whatman) 上に捕集し, SYBR Gold (400 倍希釈, Molecular Probes)によって染色して蛍光顕微鏡(BZ-9000, KEYENCE)と透過型電子顕微鏡(H-7650, (株日立) で観察することにより, ウイルス様粒子濃度 (VLPs/mL)およびウイルスサイズ分布の測定を行っ た。

2.3 光触媒層/セラミック平膜ろ過処理の運転条件2.3.1 事前準備

太陽光/TiO₂層/セラミック平膜処理の実験装置図 を Fig.1 に示す。孔径 0.1 µm のセラミック平膜 (㈱明電舎) に 5.0 cm 四方,高さ 2.0 cm のポリスチ レン製枠を接着したものを反応器とした。ここに TiO₂ (P25,日本アエロジル㈱) 0.03 g によるケーキ 層を形成し,セラミック平膜上に設置した。実験装置 の系を 2 つ用意し,一系の反応器には疑似太陽光ラン プ (SOLAX500W シリーズ XC-500BF,SERIC)の 照射を行い,二系の反応器には光の入射を防いだ。以 降では,それぞれの系を「光照射あり」,「光照射な し」と示す。その後,ペリスタリックポンプを用いて

 $\label{eq:Fig.1} Fig. 1 \quad \mbox{Experimental set-up diagram for sunlight/TiO_2 layer/ceramic flat film treatment}$

実験原水を反応器内に流入させ,下向流 0.20 cm/min (2.9 m/day)としてデッドエンド方式でろ過を開始し た。この反応器の周囲を恒温水槽によって 25±1℃に 保った水で満たし,反応器内が一定温度に保たれるよ うにした。

2.3.2 · OH 生成能力の推定試験

実験開始前に, 事前に実験原水を3時間ろ過した。 光照射開始の時間を0分として, 実験開始から定常状 態となる30分後にろ過水を採取した。TiO₂ケーキ層 上の照射強度はUVpadE(㈱アルゴ)を用いて測定 し, TiO₂層上のUV-A照射強度(波長範囲:315~ 400 nm) 0.00, 0.97, 1.90, 2.90 mW/cm²の条件とし た。対象実験であるTiO₂層を含まない太陽光/セラ ミック平膜処理実験は, TiO₂層上のUV-A照射強度 (波長範囲:315~400 nm) 5.30 mW/cm²の条件で 行った。

2.3.3 ウイルス様粒子の除去能力試験

実験開始前に, 事前に実験原水を流束 0.20 cm/min の条件下で, 3 時間ろ過した。光照射開始の時間を 0 分として, ろ過開始の 20 分後に 1 回目の採水を行っ た。その後 6 時間後まで 1 時間ごとにろ過水を採水し た。TiO₂ケーキ層上の照射強度は UVpadE (㈱アル ゴ)を用いて測定し, TiO₂層上の UV-A 照射強度 (波長範囲: 315~400 nm) 0.0, 3.3 mW/cm²の条件と した。

実験結果および考察

3.1 太陽光照射下での光触媒層上の・OH 生成濃度 とウイルスの不活化率

UVA 照射強度 0.00, 0.97, 1.90, 2.90 mW/cm²の 条件において, TiO₂層上の・OH の生成濃度は, 2, 399, 746, 1,175 nmol/L であった (**Fig. 2**)。このこ とから, UVA 照射による・OH の生成速度は, 既往

Fig. 2 Irradiance and OH formation rate on TiO₂ cake layer

研究の UVC 照射の結果¹¹⁾と同様に, UV 強度に応 じて線形を示すことが明らかになった。・OH の寿 命を 0.6 µs と仮定すると¹⁴⁾, · OH の曝露量の推算値 は、UVA 照射強度 0.97, 1.90, 2.90 mW/cm²に対し て、 6.7×10^{-3} 、 1.2×10^{-2} 、 1.9×10^{-2} nmol · s/L となる。 Mamane *et al*¹⁵⁾は、リン酸緩衝溶液中内で、ウイルス 指標として用いられるバクテリオファージ MS2, T4, T7 の 0.5 log 不活化するのに必要な・OH の CT 値は. 7~9×10⁻⁴ nmol・s/L と報告している。ノロウイルス を指標とした場合. WHO が提唱する健康上の目標値 10⁻⁶ DALY/人/年を満たすには、日本の下水二次処 理水の再生水では, 遊泳, 修景用水, 農業用水の利用 目的において、それぞれ 6.4 log, 5.1 log, 5.0 log 不活 化率が必要となる¹⁶⁾。つまり、UVA 照射強度と・OH の生成速度は線形の関係であることから、例えば5 logの不活化率を得るためには、1.2~1.5 mW/cm²の UVA 照射照度が必要だと推算される。

次に、Osakabeの報告¹⁷に基づき、春季4月、夏季 7月、秋季10月における晴天時のUVA照射強度の 時間変動から、5 log 以上の不活化率を達成可能な時 間帯を考察した。日本(京都)の春季において、晴天 時のUVA照射強度1.5 mW/cm²以上となる時間帯は、 7:00~17:00頃であった。従って、太陽光利用を想 定した本処理システムの現条件では、約10時間、ウ イルスを不活化できることが示唆された。夏季におい ては、晴天時のUVA照射強度1.5 mW/cm²以上とな る時間帯は、7:00~18:00頃であり、約11時間、ウ イルスを不活化できることが示唆された。秋季におい ては、晴天時のUVA照射強度1.5 mW/cm²以上とな る時間帯は、8:00~15:00頃であり、約7時間、ウ イルスを不活化できることが示唆された。

太陽光利用型のオンサイト処理システムを導入する 場合,太陽光の供給によって運転時間に制約があると 考えられる。しかし,日中のみに修景用水や雑用水 (散水など)を供給する事例が一般的に知られている。 従って,本処理システムでは,夜間の使用量が少ない 生活排水を,夕方から朝方まで貯留をして,日中処理 を施すことが望ましいと考えられる。なお,本処理シ ステムによるウイルスの不活化は,流束の制御によ り,・OHとウイルスとの接触時間を容易に調整でき る。また、処理水量の制御は、平膜の有効面積に応じ て確保することが容易である。つまり、太陽光利用型 のオンサイト処理システムは、利用用途に応じた水を 水質・水量の面から供給可能な技術として考えられる。 よって、本処理システムは、適切な水質と水量を提供 するために太陽光の特性を活用し、再生可能エネル ギーを利用した持続可能な水の供給方法として有望で あると考えられる。

3.2 太陽光照射下での光触媒層による全ウイルス様 粒子の除去能力¹⁸⁾

本処理システムによる全ウイルス様粒子の対数除去 率を Fig. 3 に示す。横軸はろ過開始からの時間で, 縦軸は全ウイルス様粒子の対数除去率である。原水中 のウイルス様粒子濃度は2回の試行のどちらでも 1.1×10⁸ VLPs/mL であった。光照射あり・なしの両 群で実験開始時に 3.8~5.2 log のウイルス除去が見ら れた。その後,光照射のない群ではウイルスの除去率 が経時的に減少し,6時間後に 1.0,1.2 log まで低下 した。セラミック平膜は実験原水中のウイルス(100 nm 未満のサイズ:全ウイルスの約 92%)を阻止でき ないため,実験開始時の高い除去率は TiO₂層の吸着 効果と TiO₂層の細孔によるふるいの効果によると考 えられる(Fig. 4)。つづく経時的な除去率の低下は

 $Fig. \ 3 \quad \ \ Changes in logarithmic removal rate of virus-like particles \\ through time$

Fig. 4 Size distribution of viruses in feed water and filtered water

TiO₂層の吸着サイトが飽和に近づいたことによると 考えられる。一方,光照射のある群では6時間後に 3.5,3.2 logの除去率を示した。この群では促進酸化 だけではなく,太陽光照射による直接・間接的な分解 効果も加わるが,それによるウイルス除去は本実験に おいてほとんど生じない¹⁹⁾。よって,高い除去率を維 持した主要因は促進酸化であると考えられる。以上の 結果より,光触媒層によるウイルス除去効果の研究に おいて,促進酸化に着目し,ウイルスと活性酸素の量 論的関係を把握した解析が必要になるものと考えられ る。

4. 結 論

本研究により得られた結果を以下に示す。

- 実太陽光の照射強度の範囲において、TiO₂層上の UVA 照射強度が 0.00, 0.97, 1.90, 2.90 mW/cm² の場合に、TiO₂層上の・OH の生成濃度は、2, 399, 746, 1,175 nmol/L を示し、線形の傾きを示 すことが確認された。
- 遊泳,修景用水,農業用水として利用するために
 は、概ね5logのウイルスの不活化率を得るのに、
 流束 2.9 m/dayの条件下において、約1.2~1.5
 mW/cm²のUVA照射照度が必要であることが推
 算された。また、その利用目的に適した時間
 (UVA照射照度1.5 mW/cm²以上)は、春季、夏
 期,秋季の晴天時において、それぞれ約10,11、
 7時間であった。
- 3. セラミック平膜上に形成された TiO₂層は, TiO₂層 の吸着と TiO₂層の細孔によって, ウイルス様粒子 を一時的に除去できることが明らかになった。
- 本処理システムにおいて、ウイルス様粒子を対象 とした際には、TiO2層上のUV-A 照射強度 3.3 mW/cm², 流束 2.9 m/day の条件下で、継続して 3.2~3.5 log 程度を除去できた。

太陽光/光触媒層/セラミック平膜処理システムは, 実太陽光の照射強度に応じて,TiO2層上で・OHを効 率良く生成し,ウイルス様粒子を除去できることが確 かめられた。また,ここで促進酸化が主要因であった ことが判明し,光触媒層によるウイルス除去効果の研 究におけるウイルスと活性酸素の量論的関係を把握す る重要性が示唆された。今後は,利用用途に応じた本 処理システムのウイルス除去の最適化を検討するため にも,流束の違いからウイルスの不活に関する評価を 行う。

参考文献

- United Nations: THE 17 GOALS | Sustainable Development. https://sdgs.un.org/goals (accessed 2023-07-26).
- 2) Organization, W. H. (UNICEF); U. N. C. F. Progress on Household Drinking Water, Sanitation and Hygiene 2000-2020: Five Years into the SDGs; World Health Organization: Geneva, (2021).
- 3) 安永望,稲永康隆,生沼学:未来社会に向けた水処理技術, 三菱電機技報, 89.7 383-386, (2015).
- 4) J-POWER グループの HP:オンサイト型地下水浄水処理 サービスオンサイト型地下水浄水処理サービスとは、 https://www.jpower.co.jp/bs/other/oth00220.html, (accessed 2023-07-26).
- 5) Zheng, X., Shen, Z. P., Shi, L., Cheng, R., Yuan, D. H.: Photocatalytic membrane reactors (PMRs) in water treatment: configurations and influencing factors. *Catalysts*, 7 (8), 224, (2017).
- 6) Fisher, M. B., Love, D. C., Schuech, R., Nelson, K. L.: Simulated Sunlight Action Spectra for Inactivation of MS2 and PRD1 Bacteriophages in Clear Water. *Environ. Sci. Technol.* 45 (21), pp. 9249–9255, (2011).
- 7) Hasija, V., Patial, S., Singh, P., Nguyen, V. -H., Le, Q. V., Thakur, V. K.: Hussain, C. M.: Selvasembian, R., Huang, C. -W., Thakur, S., Raizada, P.: Photocatalytic Inactivation of Viruses Using Graphitic Carbon Nitride-Based Photocatalysts: Virucidal Performance and Mechanism. *Catalysts*, 11 (12), 1448, (2021).
- Mac Mahon, J., Pillai, S. C., Kelly, J. M., Gill, L. W.: Solar Photocatalytic Disinfection of E. Coli and Bacteriophages MS2, ΦX174 and PR772 Using TiO₂, ZnO and Ruthenium Based Complexes in a Continuous Flow System. *J. Photochem. Photobiol. B*, 170, pp. 79–90, (2017).
- 9) Shirasaki, N., Matsushita, T., Matsui, Y., Kobuke, M., Ohno, K.: Comparison of Removal Performance of Two Surrogates for Pathogenic Waterborne Viruses, Bacteriophage Qβ and MS2, in a Coagulation-Ceramic Microfiltration System. J. Membr. Sci. 326 (2), pp. 564–571, (2009).

- 日本規格協会: JISR1704 ファインセラミックス 活性酸 素生成能力測定による光触媒材料の水質浄化性能試験方法, (2007).
- 11)本間亮介:下水処理水中の残留医薬品類を対象とした UV/TiO₂層/セラミック平膜ろ過の処理特性に関する研究, 京都大学大学院工学研究科都市環境工学専攻博士論文, (2021).
- 12) 本間亮介,竹内悠,鮫島正一,丹後元秀,西村文武,新井喜 明:光触媒層/セラミック平膜処理による下水処理水中の cyclophosphamideの除去効果,第57回日本水環境学会年会 講演集,p.306,(2023).
- 13) Shen, S., Tominaga, K., Tsuchiya, K., Matsuda, T., Yoshida, T., Shimizu, Y.: Identification of key virus-prokaryote infection pairs that contribute to viral shunt in a freshwater lake. *bioRxiv.* DOI: 10.1101/2023.02.05.527221, (2023).
- 14) 都留稔了:ナノ多孔性酸化チタン膜を用いた光触媒膜型反応, 膜, 28(4), pp. 170-176, (2003).
- 15) Mamane, H., Shemer, H., Linden, K. G.: Inactivation of E. Coli, B. Subtilis Spores, and MS2, T4, and T7 Phage Using UV/H₂O₂ Advanced Oxidation. *J. Hazard. Mater*, 146 (3), 479-486, (2007).
- Takeuchi, H., Tanaka, H.: Water Reuse and Recycling in Japan — History, Current Situation, and Future Perspectives. *Water Cycle*, 1, 1–12, (2020).
- Osakabe, M.: Biological Impact of Ultraviolet-B Radiation on Spider Mites and Its Application in Integrated Pest Management. *Appl. Entomol. Zool*, 56 (2), 139–155, (2021).
- 18) 丹後元秀,本間亮介,沈尚,竹内悠,鮫島正一,西村文武, 新井喜明:太陽光利用オンサイト処理に向けた光触媒層/セラ ミック平膜処理によるウイルスへの除去効果,第57回日本 水環境学会年会講演集,p.126,(2023)
- 19) 丹後元秀,本間亮介,沈尚,朴耿洙,竹内悠,中田典秀,田 中宏明,鮫島正一:疑似太陽光照射下における光触媒ケーキ 層/セラミック平膜処理システムによる下水処理水中ウイルス の粒子の消失と不活化に関する基礎検討,第43回京都大学 環境衛生工学研究,35(3), pp.46-48, (2021).