〈研究発表〉

水処理施設におけるスカム堆積抑制の取り組み(その2)

兼 子 清 隆¹⁾, 桑 折 健太郎²⁾, 寺 井 健 太³⁾, 中 村 $\mathscr{H}^{4^{1}}$

¹⁾東京都下水道サービス㈱ 技術部技術開発課 (〒100-0004 東京都千代田区大手町 2-6-3 E-mail:kiyotaka-kaneko3@tgs-sw.co.jp) ²⁾東京都下水道局東部第一下水道事務所砂町水再生センター (〒136-0075 東京都江東区新砂 3-9-1 E-mail:Kentarou_Koori@member.metro.tokyo.jp) ³⁾イービストレード㈱ 環境バイオ事業室

(〒101-0046 東京都千代田区神田多町2-1 E-mail:k.terai@ebistrade.com)

4) エビスマリン(株) 製造開発部

(〒850-0057 長崎市大黒町9-22 E-mail:nakamura@ebismarine.com)

概 要

都内の下水処理施設では、スカム堆積抑制のため、湖沼等の水質浄化に利用されている「ジェットストリーマー技術」を用いた導水式無閉塞水流発生装置(以下「AS:アクアストリーマー」という)を開発し実用化している。今回は、本装置(AS)を用いてスカム堆積抑制の取り組みを行った前回の報告に引き続き、スカム浮上を抑制するメカニズムと最初沈殿池導水渠の形状における ASの効果及び適用範囲を理論式や流体解析等により導き出したので報告する。

キーワード:下水処理,スカム,アクアストリーマー,水流,堆積抑制 原稿受付 2023.6.19

EICA: 28(2 · 3) 94-97

1. 概 要

1.1 はじめに

東京都墨田区,江東区の大部分を下水処理区に持つ 砂町水再生センターでは,最初沈殿池導水渠及び沈殿 池水路におけるスカム堆積抑制のため,ASを開発し 令和元年より実用化している¹⁾。

1.2 適用技術について

(1) AS の原理

ASは、圧力水(Q1)を整流筒内部のノズルから吐 出させることで、整流筒周囲の水(Q2,Q3)を吸引随 伴し、圧力水の数倍もの水(Q1+Q2+Q3)を直進さ せる「ジェットストリーマー技術」を利用した既存技 術である。

また,ASは点検口に容易に設置が可能な小型の装置であり、スクリュー等の回転部分がないため、圧力 水の放出に伴い、しさ・ふさ等で閉塞しにくい構造と なっている(**Fig.1**)。

Fig.1 ASとジェットストリーマー技術

(2) AS によるスカム堆積抑制効果

砂町水再生センターでは、最初沈殿池導水渠に1か 所及び沈殿池(2池)の水路に各1か所の計3か所で ASによる水流を発生させており、沈殿池水路に設置 した原水ポンプ(7.5 kW)からの圧力水(Q1)は、 切替弁のタイマー運転により各場所へ順番に供給して いる。

前回の報告²⁾では, 7.5 kW のポンプを使用した際に AS (水流発生部) より前方 9 m におけるスカム堆積 抑制効果を確認し, その際の水面流速は 0.15 m/s で あった。

スカム堆積抑制効果を最大限に発揮させるには, ASにより常に水流を与え続ければよいと考えるが, スカム発生状況に応じた ASの運転(水流発生)設定 を行うことにより,消費電力節減と良好なスカム堆積 抑制効果が両立できることをその後の実証により確認 した³⁾。

なお,最初沈殿池導水渠及び沈殿池水路でASにより流動したスカムは,それぞれ,後段に設置されているスカム収集装置等により,沈殿池系統外のスカム処 理施設へ送水される。

また, AS を稼働してから2年経過後でもポンプ及 び各場所の水流発生部において,しさ・ふさ等による 閉塞等の不具合がないことを確認した。

(3) 調査目的

これまでは、7.5 kWのポンプを使用して現在実用

化している最初沈殿池導水渠及び沈殿池水路における スカム堆積抑制効果を確認したが、最初沈殿池導水渠 は、沈殿池形状により長いもので数十メートルとなり、 流入する汚水の流速が停滞した箇所でスカムの堆積が 生じることから、様々な形状の下水処理施設において ASによるスカム堆積抑制効果を発揮させるためには、 スカムの浮上速度と ASによる流速との関係に基づく ASの適用範囲を検討する必要がある。

検討にあたって筆者らは、最初沈殿池等の水面にお けるスカムの堆積は、油分等を含んだスカムの浮上す る速度が、導水渠等を流れる汚水の速度を上回る場合 に生じ、水面流速が大きい場合は、スカム同士の結合 による塊が生成されずに、堆積に至らないと仮定した。

一方,これまでの実証結果により AS による水流が 発生している領域では,水中にあるスカムの浮上と水 路表面でのスカムの堆積を抑制する効果があることを 確認しているため,スカム浮上速度と AS による流速 との関係から,水流によりスカムが浮上しない領域を 計算で求めた。

また,今回は,実用化している7.5 kW ポンプのほか,11 kW ポンプにおける最初沈殿池導水渠水路の 流速分布について流体解析を行うことにより,導水渠 形状やポンプ出力による AS の適用範囲に関する調査 を行った。

2. AS 適用範囲の調査

2.1 スカム浮上速度の調査

(1) 模擬スカムによる浮上速度の算出

水路内に存在するスカムが水面に浮上する際の速度 を算出するため、水と食用油とゼラチンを混合し、そ の体積混合比で密度を変えて、試料ア.1.055 g/cm³、 イ.1.025 g/cm³、ウ.0.976 g/cm³の3条件と、形状 は立方体として、大きさを5 mm、10 mm の2条件で 切り出し、計6条件の模擬スカムを作製した。その模 擬スカムを内寸直径 190 mm、高さ 900 mm のアクリ ル水槽に、700 mm まで水を張った中に静かに投入し、 その挙動をハイスピードカメラ(Fastec 社製、型式 TS5-H)で動画撮影し移動時間と距離で速度を求め た(**Fig.2(a**))。

この結果を基にスカムの浮上を抑制するために必要 な水平方向の流速を算定した。

(2) インパクト式の適用

粒度分析法の一つに沈降法があり,2mm以上の粒 子にはインパクト式といわれる沈降速度の計算式があ る⁴。インパクト式は沈降速度の一般式(①式)に抵 抗係数を代入した式で表され,速度の時間変化は②式 のように表される。

$$v = \sqrt{4} |\rho_s - \rho_w| g d/3 \rho_w C_d \tag{1}$$

v:速度, ρ_s:粒子の密度, ρ_w:分散媒の密度, g:重力加速度, C_a:抵抗係数(立方体の場合 0.91, 球体の場合 0.44)

 $v(t) = V_{\infty} \tanh(t/\tau) \quad (0 < v < V_{\infty} \mathcal{O})$ 時) ②

ここで $\tau = \rho_s / \{ |\rho_s - \rho_w| g \}$ とする。 この時, $t = \infty$ とすると終端速度 V_∞ は,

$$V_{\infty} = \sqrt{4} \left| \rho_s - \rho_w \right| g d / 3 \rho_w C_d \tag{3}$$

となり、①の一般式と同式となる。

細目(1) で作製した模擬スカム(試料)の物理量を ②式に代入し経過時間と速度の関係を求め,実験結果 と比較しその妥当性を確認した。

2.2 AS による流速分布の調査

(1) 噴流式による計算

ASの整流筒から吐出される水流は軸対称噴流と呼ばれ、その噴流の速度分布を実験で求め表した式がある。その一例である Albertson の噴流式⁵⁾を以下に示す。

初速: $U_0=4/\pi \cdot Q/D^2$	4
噴流方向流速: $U_m = 6.2D \cdot U_0 / x$	(5)
噴流幅方向流速: $u = U_m EXP(-76.2y^2/x^2)$	6

Q:整流筒吐出量[m³/s], *D*:整流筒出口直径[m], *x*:噴流方向距離[m], *y*:軸幅方向距離[m]

11 kW ポンプで圧力水を供給した際の条件は,整 流筒からの吐出流量を 5.2 m³/min, 7.5 kW ポンプで の条件は,整流筒からの吐出流量を 2.4 m³/min とし て整流筒先端の初速を噴流式に代入し計算した。

(2) 流体解析

導水渠における AS 水流による流速等については, 施設形状による流速への影響を確認するため,三次元 シミュレーションモデルによる流体解析を実施した。

噴流式の条件と同様に 11 kW ポンプでの条件は, 整流筒からの吐出流量を 5.2 m³/min, 7.5 kW ポンプ での条件は,整流筒からの吐出流量を 2.4 m³/min の 値を適用した。計算手法は非圧縮性/等温の不混和混 相流非定常計算,自由表面流は VOF 法(メッシュの うち液体が占める体積の割合を液体充填率という関数 として定義し,移流方程式を解いて界面を求める手 法)で行った。気相と液相の密度を空気:1 kg/m³, 水:1,000 kg/m³とし,動粘性係数を空気:1.48×10⁻⁵ m²/s,水:1.00×10⁻⁶ m²/s とした。水路形状は長さ 30 m,幅 3.0 m と 1.5 m の 2 種類,境界条件は整流筒 および壁は no-slip 条件,下流と上流端面は静水圧と して解析を行った。乱流モデルは LES(ダイナミッ ク k 方程式)モデルを用いた(**Fig. 3**)。

3. 調 査 結 果

3.1 スカム浮上速度の調査結果

実験時の水温(18℃)での密度 0.998 g/cm³を②式 に代入し各試料の時間経過による速度変化を求めて実 験結果と比較したグラフを Fig. 2(b) に示す。一部で インパクト式(理論値)に沿わない結果となっている が、9秒前後経過した時の終端速度は、概ね実験結果 と②式の計算結果が合致していることを確認した。

また, Fig. 2(a) で試料ウの水中で浮上する模擬ス カム (0.976 g/cm³) と試料イの沈降する模擬スカム (1.025 g/cm³) の 18℃の水 (0.998 g/cm³) との密度 差の絶対値は,ウは 0.022,イは 0.027 ポイントと近 い値となるのに対し,実験結果 (Fig. 2)の 8~9 秒 後の浮上及び沈降速度も 0.0395 m/s と 0.0387 m/s と 近い値となる。

このことから、浮上と沈降で向きが180°違っても 密度差によって速度が決まることを確認した。

この結果を踏まえて,実際の浮上スカムを有機汚泥 物と油分の混合物と考え,密度と浮上速度を求めた。

有機汚泥の密度を 1.03 g/cm³, 食用油の密度を 0.92 g/cm³としてスカムの密度範囲を 0.92~1.03 g/ cm³と想定した。試料ウの模擬スカム (0.976 g/cm³) は,有機物:食用油=1:1の体積混合比と算出でき る。一方,資料アの模擬スカム (1.055 g/cm³) は, 20℃ (0.998 g/cm³)の水中を浮上する密度として算 出すると 0.998-0.057=0.941 g/cm³となり,このと き有機物:食用油=1:4の体積混合比と算出できる。 浮上スカムの大きさを 5 mm,形状を円柱(抵抗係数 0.63)と球体(抵抗係数 0.44)との混合物と考え,抵 抗係数を 0.55と仮定した場合の流速を,スカム浮上 を抑制するために必要な水平方向の流速とした。この 時の流速は①式より 0.08 m/s 以上が必要と算出した。

3.2 ASによる流速分布の調査結果

Fig.4に Albertson の噴流式を用いて計算した結果 と流体解析の結果及び 7.5 kW ポンプでの実測結果を 示す。

Fig.4 整流筒中心(水面下 0.2 m)付近の流速

流体解析の結果は、項2.2 細目(2)の流体解析にお ける、ASが停止状態から120秒進めた結果の終了間 際の約20秒間の平均流速を示す。この結果から一部 を除き計算値,解析値及び実測値が近い値となってい ることを確認した。なお、7.5 kW 実測値と計算値に 乖離がある原因は、計算値は噴流軸上の値であるが、 実測値は施設の都合により噴流軸から離れた位置で測 定した値であるためと考える。

また,項3.1の実験結果で定めた0.08 m/s 以上の 範囲を計算値の流速分布に示した結果を **Fig.5** に示 す。噴流軸方向は7.5 kW ポンプでは17 m,11 kW ポ ンプでは45 m,噴流幅方向は7.5 kW ポンプでは ±0.8 m,11 kW ポンプでは±2.25 m がその範囲と なった。

3.3 流体解析結果

吐出開始から 115 秒後の AS 位置(水路中央) にお ける鉛直断面流速分布結果を **Fig. 6** に示す。(a) は 水路幅 3.0 m, 11 kW 用 AS の場合,(b) は水路幅 3.0 m, 7.5 kW 用 AS の場合,(c) は水路幅 1.5 m, 11 kW 用 AS の場合,(d) は水路幅 1.5 m, 7.5 kW 用 AS の 場合を示す。

(a)の場合は、ASから10m下流以降は下流側へ 動いた水面の水量を補うように水路底の流れが逆流す る(0.25 m/s 程度)補償流の発生も重なり下流側へ の流速が減衰しながらASより25m下流地点まで概 ね0.08 m/s以上の流速を確認した。(b)の場合は、 ASから8m下流以降は(a)に比べ逆流は弱い (0.175 m/s 程度)ものの下流側への流速が減衰しな がらASより15m下流地点まで概ね0.08 m/s以上の 流速を確認した。(c)の場合は、ほぼ16m以上進む ことはなく水路底に向かう流れとなって逆流が強くな る(0.5 m/s 程度)結果となった。(d)の場合は、水 路底の逆流が0.2 m/s 程度あるものの、ASから20 m 近くまで0.08 m/sの流れが届いていることを確認し た。

また,(a)の条件に定常的に沈殿池導水渠への流入

Fig.6 水路鉛直断面の流速分布(噴流吐出から115秒後)

汚水が 0.3 m/s あると仮定して解析すると(Fig. 6 (e)), AS から 10 m 付近で発生していた逆流が治まり, AS から 25 m 地点の平均流速が定常的な汚水の流れ を考慮していない時の 0.08 m/s から 0.14 (0.44-0.3) m/s と速くなり, Fig. 4 に示した 11 kW 計算値に近 い結果を得た。

以上の結果, 定常的な流入汚水の速度を考慮しない 条件では流速が 0.08 m/s 以上となる AS の適用範囲 は,水路幅が 1.5 m では水路長は 25 m までは 7.5 kW ポンプの AS が適用され,水路幅が 3.0 m では,水路 長が 15 m までは 7.5 kW ポンプ,25 m までは 11 kW ポンプの AS が適用できることを確認した。

4. ま と め

今回は、模擬スカムを使用した実験からスカム浮上 を抑制する水平方向の必要流速を 0.08 m/s 以上と算 定し、7.5 kW ポンプの AS と 11 kW ポンプの AS の 適用範囲を Albertson の噴流式及び流体解析により設 定した。

また,今回は導水渠形状による AS の適用範囲を調 査したが,7.5 kW ポンプの AS を設置している最初 沈殿池クロス水路(水路幅約5m)に当てはめると, 48 時間運転後では装置から 20 m の地点で 0.3 m/s の 流速があることを確認している⁶ことから,水路幅が 広い施設形状では小さいサイズのポンプ仕様の AS を 適用するのがよいと考える。

今後は, 11 kW ポンプの AS を実施設に仮設して検 証を行うことや他の施設形状での適用範囲調査を行う 予定である。

参考文献

- 三牧大朗:水処理施設におけるスカムの破壊・堆積防止対策, 第 55 回下水道研究発表会講演集, pp. 806-808 (2018)
- 小高勇,池田恵一,清水雅之,中村光:導水式無閉塞水流 発生装置(AS)のスカム堆積抑制効果について,EICA第24
 巻,第2・3号,pp.66-69 (2019)
- 3) 兼子清隆,池田恵一,寺井健太,中村光:第58回下水道研 究発表会講演集,導水式無閉塞水流発生装置(AS)のスカム 堆積抑制効果について(その2),pp.650-652 (2021)
- 4) Gibbs, R. J., Matthews, M. D., and Link, D. A. 1971, The relationship between sphere size and settling velocity. Journal of Sedimentary Petrology, Vol. 41, No. 1, pp. 7–18 (1971)
- 5) N·Rajaratnam, 野村安正訳:TURBULENT JETS 噴流, 森北出版, p.43 (1985)
- 6) 小高勇,池田恵一,清水雅之,中村光:第57回下水道研究 発表会講演集,導水式無閉塞水流発生装置(AS)のスカム堆 積抑制効果について,pp.760-763 (2020)
- [特許:日本特許, 6842817 (2021)]