〈論文〉

脱窒性リン蓄積菌を活用した低動力下水処理プロセスの開発

西田佳記¹⁾,山野井一郎¹⁾

¹⁾ 日立製作所 日立研究所 (〒319-1221 日立市大みか町七丁目2番1号, E-mail: yoshinori.nishida.js@hitachi.com)

概要

下水処理の低動力化を目的として, 脱窒性リン蓄積菌 (DPAOs) を活用した Two-sludge system が提案されている。Two-sludge system は硝化プロセスと DPAOs が関与する脱窒・脱リンプロセ スから構成されるが、適切な運転条件は未確立である。本研究では脱窒・脱リンプロセスの運転条 件の確立のため,連続バッチ実験を実施した。その結果,嫌気-無酸素プロセスに1時間の好気工 程を追加することで、活性汚泥の沈降性が良好に保たれた。また、嫌気-無酸素-好気プロセスで 窒素除去率 98%。リン除去率 81% が得られ。脱窒・脱リンプロセスとして最も高い成立性を確認で きた。

キーワード:高度処理, 脱窒性リン蓄積菌 (DPAOs), two-sludge system, 省エネ 原稿受付 2012.7.25 原稿受理 2012.8.20

EICA: 17(2·3) 39-46

1. は じ めに

近年、地球温暖化防止や経済性の観点から、下水の 高度処理においても動力低減が求められている。その ため、制限曝気により A²/O 法を実施する制限曝気 A²/O 法¹や, 硝化液循環設備を省略した AOAO 法²⁾ の導入が進められている。一方、新たな生物処理とし て, 脱窒性リン蓄積菌 (DPAOs: Denitrifying Phosphate Accumulating Organisms)を活用した生物処理が提案され ている3,4)。

従来のリン除去はリン蓄積菌 (PAOs: Phosphate Accumulating Organisms)の働きを利用している。この PAOs は嫌気状態下で有機物を摂取する過程で PO₄ -Pを放出する。一方,好気状態では PAOs は酸素を 用いて放出量以上の PO₄-P を取り込み、ポリリン酸 として蓄積する。そして、ポリリン酸を蓄積した PAOs を余剰汚泥として排出することで、リンは除去 される。一方、PAOsの中には酸素に加えて硝酸イオ ンもリン摂取に利用できる DPAOs が存在すると言わ れており⁵⁻⁹⁾, DPAOs を活用することでリン除去に必 要な酸素量が減少し、曝気風量の低減が可能となる。 また、DPAOs による無酸素的リン摂取時に硝酸イオ ンは窒素に還元されるため、蓄積有機物を脱窒とリン 摂取の両方に利用できる。そのため、窒素・リン除去 に必要な有機物量が低減し、低有機物負荷においても 窒素・リン除去が期待できる。さらに、電子受容体と して硝酸イオンを用いた場合のエネルギー効率は酸素 利用時の60%であると報告されており⁶⁾,余剰汚泥発

生量の軽減が期待される。DPAOs の活用の効果とし て、代謝モデルによる試算の結果から、硝化菌・ DPAOs による窒素・リン除去での酸素消費量,必要 有機物量および余剰汚泥発生量は、硝化菌・脱窒菌・ PAOs による除去に比べてそれぞれ 30%, 50%, 50% 減少することが報告されている³⁾。また、生物毒性が ある亜硝酸イオンの存在下においても DPAOs はリン 摂取能力を持つことが報告されており⁷⁻⁹⁾, 亜硝酸型 硝化運転による DPAOs の集積化, 曝気風量の削減が 期待される。なお、亜硝酸型硝化運転の場合、脱窒時 に発生したガスは主に N₂O であったとの報告もあ Z¹⁰⁾。

以上のように DPAOs を活用することにより動力低 減や、PAOsと脱窒菌との有機物を巡る競合関係の緩 和が期待される。しかし、A/O 法や A²/O 法といっ た従来の下水処理法における DPAOs の活性は低いと されている^{11,12)}。この原因として、従来の下水処理の ように長時間の好気状態が存在すると、他の PAOs との競合関係において DPAOs に不利に働くと考えら れている¹¹⁾。そのため、DPAOs を活用するためには 曝気時間・風量の低減が必要となるが、窒素除去には 硝化のための長時間の曝気が必要である。そこで, DPAOs を活用するために硝化プロセスを DPAOs に よる脱窒・脱リンプロセスから分離した Two-sludge system が提案されている³⁾。Two-sludge system の一 例を Fig. 1 に示す。Two-sludge system では嫌気槽の 後段に汚泥分離槽が設置され、その上澄み液は硝化槽 において硝化され,無酸素槽へ移送される。一方,

DPAOs が蓄積した沈殿汚泥は直接無酸素槽へ移送さ れ、硝化槽から流入する硝酸イオンを用いて DPAOs は脱窒とリン摂取を行う。このように Two-sludge system では硝化プロセスと脱窒・脱リンプロセスで 用いる活性汚泥の分離により硝化菌と DPAOs をそれ ぞれ適切な条件下で馴養でき, DPAOs の集積度の向 上が期待できる。しかし、汚泥分離槽は設置面積の増 大やシステムの複雑化の要因ともなる。また、沈殿汚 泥に随伴する被処理水中の NH₄-N は未硝化のまま無 酸素槽に流入するため、脱窒されず除去されない。こ のNH₄-Nの処理や残存したPO₄-Pの除去,活性汚泥 の浮上防止のため、後段に好気性処理が必要となる。 本プロセスは従来法に比べて大幅な動力低減が期待で きるが、現状では処理性能や DPAOs の活性を維持す るための適切な運転条件は明らかになってない。そこ で、本研究では Two-sludge system における脱窒・ 脱リンプロセスでの運転条件と処理性能, DPAOs 集 積度の関係を回分実験により調べ、適切な運転条件を 探索した。

Fig.1: Configuration of the two-sludge system

2. 実験方法

2.1 SBR 実験

本研究では Two-sludge system における脱窒・脱 リンプロセスの運転条件の確立のため, **Fig.2** に示し た連続バッチ実験装置 (SBR: Sequencing Batch Reactor) を用いて人工下水の処理実験を実施した。SBR の有 効容積は4Lであり,恒温装置により水温は20℃に 維持した。SBR 実験に供した活性汚泥は A/O 法を採 用している下水処理場から採取した。

SBR 実験の4つの Run の処理工程を Fig.3 に示す。 Run 1を例として、1サイクルでの処理の概要を述べ る。前サイクルでの沈降活性汚泥に対して人工下水 2 Lを供給した時点をサイクルの開始とし、嫌気工 程,無酸素工程,沈殿工程,排水工程の合計6時間を 1サイクルとした。開始後1.5時間の嫌気工程後,硝 化プロセスからの硝化液の流入を想定し、終濃度10 mgN/L になるように KNO₃溶液を注入した。無酸素 工程は3時間とした。沈殿工程では、工程開始後の 10分間の再曝気工程により、脱窒気泡を除去し、活 性汚泥の沈降性を維持した。排水工程において上澄み 2Lを排水し、次サイクルへ移行した。このように Run 1 では 10 分間の再曝気以外に好気状態が存在し ないため、ブロワ動力も低減でき、さらに DPAOs 集 積においても有利であると考えられた。

Run 1 との相違点に基づき、Run 2-4 の運転条件に ついて述べる。Run 2 では、嫌気工程後の KNO3溶液注 入後, DO 濃度を 0.5 mg/L 以下になるように曝気す る微好気工程とした。微好気工程により, DPAOs に よる無酸素的リン摂取と共に、沈殿汚泥中の NH₄-N の同時硝化脱窒を行い. Run 1より高い処理性能を期 待した。Run 3 では無酸素時間を 2 時間に短縮し,そ の後段に1時間の好気工程を設けた。好気工程の追加 により、補完的なリン摂取や沈殿汚泥中の NH₄-N の 硝化が可能となると考えられた。Run 4 では Run 3 で の1時間の好気工程を無酸素工程の前段に設けた。こ れにより、沈殿汚泥中のNH4-Nが好気工程で硝化さ れ,続く無酸素工程で脱窒されることによる処理水質 の向上を期待した。Run 3,4では、ブロワ動力の低減 効果を検証するため、MLSS 濃度あたりの好気工程で の曝気風量をパラメータとし,変動した DO 濃度に対 する窒素・リン除去性能も評価した。全ての Run で HRT は 12 時間, SRT は 50 日に設定した。人工下水は 常田ら4)による方法を模擬し, Table 1 に示した組成 とした。ただし、本実験では KNO₃溶液注入分を考慮 し、人工下水1Lに含まれる (NH₄)₂SO₄量を常田ら の方法⁴⁾の 30 mgN から 10 mgN へと減少した。また, KNO₃溶液1L中には,硝化によるpHの低下を想定し て H₂SO₄(2N) を 2 mL を添加した。これにより. サイ クルを通じて反応槽中の pH を 7.0-8.0 に維持した。

Fig.2: Configuration of the SBR experiment

Table1: Composition of synthetic wastewater

人工下水			*栄養液	
成分	1Lあたり		成分	1Lあたり
酢酸Na	384.4 mg	(112.5mgC)	FeCl ₃ • 6H ₂ O	1500 mg
KH ₂ PO ₄	49.4 mg	(11.25mgP)	H3BO3	150 mg
(NH ₄) ₂ SO ₄	47.1 mg	(10 mgN)	CuSO4 • 5H ₂ O	30 mg
CaCl ₂ • 2H ₂ O	14 mg		KI	180 mg
MgSO₄	53 mg		MnCl ₂ • 4H ₂ O	120 mg
*栄養液	0.3 mL		Na₂MoO₄ ▪ 2H₂O	60 mg
			ZnSO4 • 7H ₂ O	120 mg
			CoCl ₂ • 6H ₂ O	150 mg
			EDTA	10 g

2.2 リン摂取活性実験

現在 DPAOs は単離同定されておらず,DPAOs の 存在量を定量的に測定することは困難である。一方, 好気的リン摂取速度に対する無酸素的リン摂取速度の 比が全ての PAOs に占める DPAOs の比率をよく反 映していることが報告されている^{13,14}。そこで, DPAOs の集積度を評価するために好気・無酸素状態 でのリン摂取速度の比が用いられている^{7,11,13,14}。本 研究では以下の手順⁷⁾でリン摂取活性実験を実施し, DPAOs 集積度を評価した。

- (i) 好気的・無酸素的リン摂取速度測定用に, SBR 実験の沈澱工程開始直前の活性汚泥を 300 mL ずつ2系列分採取した。
- (ii) 採取した活性汚泥を10分間窒素パージし、嫌気状態とした。
- (iii) 基質として酢酸ナトリウム溶液を終濃度 30 mgC/L になるように添加した。
- (iv) 1.5 時間嫌気状態で撹拌した後、1系列は曝気を行い、好気状態とした。もう1系列は
 KNO₃溶液を終濃度 20 mg/L になるように添加し、無酸素状態とした。
- (v) 好気または無酸素状態を1時間保持し、その 間15分ごとに採水し、試料中のPO₄-P濃度 を測定した。
- (vi) PO₄-P 濃度の経時変化から, 好気的・無酸素的リン摂取速度を算出した。
- (vii) 好気的リン摂取速度に対する無酸素的リン摂 取速度の比を DPAOs 集積度として算出した。

このリン摂取活性実験で求めた好気・無酸素状態で のリン摂取速度は基質が十分な条件下での値であるた め,それぞれ最大好気的リン摂取速度,最大無酸素的 リン摂取速度と定義した。

2.3 水質分析

NH₄-N, NO₃-N, NO₂-N 濃度はイオンクロマトグラ フ (Shimadzu SCL-10Avp), TOC 濃度は全有機炭素 計 (Shimadzu TOC-V_{CSH}) により測定した。PO₄-P 濃度はモリブデン青吸光光度法により測定した。 MLSS 濃度, SVIの測定は下水試験法¹⁵⁾に準拠した。

結果および考察

3.1 処理プロセスによる活性汚泥の性状の変化

Fig.4 に各 Run の MLSS 濃度の経日変化を示す。 図に明らかなとおり、十分な好気状態が存在しない Run 1,2 では運転 40 日目以降に MLSS 濃度が急激に 減少した。一方,好気工程を1時間実施した Run 3.4 では, 運転に伴い MLSS 濃度は増加した。Run 1,2 に おける MLSS 濃度の急減の原因を検証するため、運 転 45 日目の各 Run の SVI を Fig.5 に示す。Fig.5 の SVI の結果から, Run 1,2 の活性汚泥は適切な SVI の 範囲とされる 100-200 mL/g-MLSS¹⁶⁾を超えており、 バルキングが発生したことが分かった。後述するが、 Run 1,2では脱窒速度が非常に高く、リン摂取速度は 極めて低かった。糸状菌の中には非常に高い脱窒能力 を持つものが存在すること、また SVI の上昇に伴い リン除去率が低下したという知見が報告されている¹⁷⁾。 そのため、Run 1.2の活性汚泥の沈降性が低下した原 因として、高濃度の NO₃-N 存在下で糸状菌が優占化 した可能性が考えられた。

Fig.4: Time courses of MLSS concentration

Fig.5: Comparison of SVI values in each processes (day 45)

3.2 処理プロセスの運転条件の決定

処理プロセスの窒素・リン除去性能を評価するため, 原水(人工下水)および処理水中の濃度の比から処理 プロセスにおける窒素除去率,リン除去率を算出した。 算出した窒素除去率,リン除去率の経日変化をそれぞ れ Fig.6 (a), (b) に示す。各 Run の窒素除去率を

Fig.6: Changes of treatment efficiencies during operation

比較すると、同じ工程で構成されている Run 3 と Run 4 で除去率の違いが確認された。好気工程が無酸 素工程の後段にある Run 3 では各 Run で最も高い除 去率を示した。これに対し、前段に好気工程がある Run 4 では Run 3 に比べて 15% 程度低い値を示し, 各 Run で最も低い除去率となった。このように、好 気工程を無酸素工程の前段に設置することにより窒素 除去率が低下することが分かった。リン除去に関して は、Run 3,4 が Run 1,2 に比べると 15% 以上高く なった。このことから、好気工程を1時間実施するこ とで高いリン除去性能が得られたと考えられた。また, 各 Run のリン除去率は運転 40 日目以降に急激に除去 率が減少していた。Run 1,2 では,運転 40 日目以降 バルキングが発生しており、活性汚泥の性状が変化し ていた。この変化に伴い, DPAOs を含めた PAOs は 減少し、リン摂取能力が低下したと推察された。Run 3,4におけるリン除去率の低下の原因に関する考察は 3.4節で述べる。なお、Run1の運転28日目における 低いリン除去率の原因は、処理が安定しておらず、無 酸素工程中に PO₄-P が放出されたためであったが, 一時的な現象にとどまった。

窒素・リン除去プロセスとして最適な処理プロセス を決定するため、各 Run の最も処理性能が高い運転 日の窒素・リン除去性能を比較した。窒素・リン除去 率の合計値が最も高くなった運転日は、Run 1,4で運 転 42 日目、Run 2,3で運転 28 日目であった。これら の運転日における各 Run の窒素・リン除去率を Fig. 7 に示す。窒素除去率は Run 3 が 98% と最も高く なった。リン除去率は Run 4 が 88% と最も高く、次 に Run 3 で 81% となった。Run 1,2 では Run 3,4 と 比べて、窒素除去率は同様に高いものの、リン除去率 は低くなった。このことから、Run 3の嫌気→無酸素 →好気プロセスが窒素、リンともに高い除去性能を持 つことが分かった。

Fig.7: Comparison of nitrogen and phosphorus removal ratios

3.3 脱窒性リン蓄積菌の窒素・リン除去能力評価

処理プロセスの窒素・リン除去率に加えて、設計上 重要な活性汚泥の脱窒速度、リン摂取速度についても 比較した。Fig. 8,9 に各 Run の運転 70 日目における 脱窒速度,リン摂取速度を示す。Run 2 における微好 気工程でのリン摂取速度は無酸素的リン摂取速度とし た。Fig.8において, Run 1, 2, 3 では最終形態は不明 であるが、無酸素工程開始30分後の採水時には脱窒 が完了したため、真値は算出値以上となった。Fig.8 において Run 1,2 と Run 3,4 の 脱窒速度を比較する と, Run 1,2で非常に大きい値を示した。しかし, Fig.9においてリン摂取速度を比べると, Run 3,4 に 比べて Run 1,2 は小さくなった。Run 3,4 の無酸素工 程での窒素・リン除去性能を比較すると、Run 4 は Run 3 に比べて低く、無酸素工程の前段に好気工程を 設置すると、活性汚泥の脱窒速度、無酸素的リン摂取 速度が低くなることが分かった。従来プロセス(循環 式硝化脱窒法)の脱窒速度 (1-3 mgN/g-MLSS/h)¹⁸⁾ と比べると、Run 4 では同程度であったのに対し、 Run 1,2 では非常に高い値を示した。また、Run 3 で の算出値は従来プロセスと同程度であったため、真の 脱窒速度との比較は行わなかった。以上のことから、 十分な好気状態が存在しない Run 1.2 では、非常に 高い脱窒能力を持つ菌が集積したと考えられた。

Run 3,4の処理プロセスの詳細を比較するため,運転 70 日目の1 サイクルでの水質変化を Fig. 10 に示す。Run 3 では中間工程の無酸素工程で脱窒が完了し

(The actual rates of Run 1, 2 and 3 were higher than the values in Fig. 8)

Fig.9: Comparison of phosphate uptake rates in each run

ているのに対し, Run 4ではサイクル終了時において も脱窒が完了せず,処理水中に NO₂-N, NO₃-N がと もに 1.0 mgN/L 以上残存した。Run 4 において,脱 窒速度および無酸素的リン摂取速度が小さくなった理 由としては,活性汚泥の能力自体が低いこと,もしく は Run 4 の運転条件下では活性汚泥の働きが制限さ れることが考えられた。

そこで,活性汚泥中の PAOs および DPAOs のリ ン摂取能力を評価するため,Run 3,4 において処理が 安定した後の処理プロセスでのリン摂取速度(運転 70日;SBR 実験でのリン摂取速度)とリン摂取活性 実験でのリン摂取速度(運転 90日目;最大リン摂取

速度) を **Fig. 11** に示す。その結果, Run 4 の最大リ ン摂取速度は好気的. 無酸素的ともに Run 3 と同等 以上の値を示しており、リン摂取活性実験の条件では DPAOs の活性は高いことが分かった。これに対し、 処理プロセスにおける Run 4の無酸素的リン摂取速 度は、Run 3 と比べて約 3.5 mgP/g-MLSS/h 小さく、 Run 4の活性汚泥の最大無酸素的リン摂取速度の約 30% 程度の値であった。これらの結果により, Run 4 では高い無酸素的リン摂取能力を持っていたが、処理 プロセスではその働きが制限されていたことが分かっ た。この原因として、好気工程が前段にある運転条件 が考えられた。これは、前段の好気工程において DPAOs が好気的リン摂取に体内の有機物を消費し、 後段の無酸素工程でのリン摂取が制限される可能性が あるからである。そのため、Run 3 に比べて Run 4 で は DPAOs による無酸素的リン摂取が低く、同時に起 こる脱窒反応も進みにくくなったものと考えられる。 また、Run 4 で脱窒性能が低くなった原因として、有 機物が従属栄養菌により消費され、無酸素工程で脱窒 菌が利用する有機物が不足する可能性も考えられた。 しかし, Fig. 10 に示した通り, Run 3,4 において無 酸素工程開始時の TOC 濃度は約 45 mgC/L と同程度 であり、従属栄養菌の影響は小さいと言える。以上の 考察により, Run 4の活性汚泥中は高い無酸素的リン 摂取能力を持つが、処理プロセスでは無酸素工程の前 段に好気工程が存在することにより蓄積有機物が不足 し、DPAOs による無酸素的リン摂取、それに伴う脱 窒の働きが制限されたことが分かった。

Fig. 12 にリン摂取活性実験から求めた運転 90 日目 における各 Run の最大リン摂取速度, DPAOs 集積度 を示す。また, A/O 法での結果を運転 0 日目として 併せて示す。Run 1,2 では好気的リン摂取速度が運転 に伴い減少しており, PAOs の活性が低下していたこ とが分かった。一方, Run 3,4 では運転開始時と比べ て好気的リン摂取速度を維持しながら, 無酸素的リン 摂取速度は 4.0 mgP/g-MLSS/h 以上増加した。その ため, DPAOs 集積度は運転開始時の 21% から Run 3

Fig.10: Changes of water qualities during one cycle of operation (day 70)

で 82%, Run 4 で 70% まで上昇し, Run 3 が最も高い 集積度となった。

以上のように、SBR 実験により運転条件による活 性汚泥の沈降性、窒素・リン除去性能、DPAOs 集積 度の違いが確認された。1回のSBR 実験の結果では あるが、これらの結果から Run 3 (嫌気→無酸素→好 気プロセス)が Two-sludge system の脱窒・脱リン プロセスとして最も成立性が高いことが推察された。

3.4 運転条件に関する考察

SBR 実験により Two-sludge system の脱窒・脱リ ンプロセスとして, Run 3 (嫌気→無酸素→好気プロ セス)が優れていることが分かった。本節では, Run 3による脱窒・脱リンプロセスの最適な運転条件を決 定するため, 流入負荷や曝気風量といった処理条件と 窒素・リン除去性能の関係について考察した。

(1) 流入負荷条件

Fig. 6 に示したように Run 3 では運転 40 日目以降 にリン除去率が低下した。これは, Fig. 4 に示したよ うに運転 70 日目の MLSS 濃度は 5140 mg/L と非常に 高く, PAOs が摂取できる基質が不足したためである と考えられた。そこで, 流入負荷条件によるリン除去 への影響を評価するため, BOD-SS 負荷とリン除去 率の関係を Fig. 13 に示す。この結果から,単位 MLSS 量当たり摂取できる有機物量が減少すると,リ ン除去率が低下することが分かった。本研究で設定し た Run 3 の運転条件では, BOD-SS 負荷を 0.14 mgBOD/mg-MLSS/d 以上に設定すると 80% 以上のリン 除去率が得られることが示唆された。BOD-SS 負荷 に関して, A²/O 法では 0.2-0.4 kg-BOD/kg-MLSS/d 以下が適正とされているが¹⁶⁾,本研究のプロセスでは A²/O 法と同程度,もしくは低い有機物負荷でも 80% 以上のリン除去が期待できると考えられた。

Fig.13: Relationship between BOD load and phosphorus removal

(2) 曝気風量

Run 3の好気工程におけるブロワ動力の低減を検証 するため、単位 MLSS 量あたりの曝気風量をパラ メータとして DO 濃度がリン除去性能へ与える影響 を検討した。先述したように、Run 3の MLSS 濃度は 運転の継続に伴い増加したため。単位 MLSS 量あた りの曝気風量は減少し, DO 濃度は低下した。単位 MLSS 量あたりの曝気風量と好気工程での DO 濃度. 好気的リン摂取速度の関係を Fig. 14 に示す。単位 MLSS 量あたりの曝気風量が低下するにつれ。DO 濃 度は 0.13 mg/L まで減少し, DO 濃度が 0.13 mg/L に おけるリン摂取速度は他の実験日と比べて低くなった。 この原因として DO 濃度が低く、PAOs が利用可能な 電子受容体が不足したことが考えられる。また、他の 実験日と比べて嫌気工程での PAOs による PO₄-P 放 出量が 10 mgP/g-MLSS 以上低かったことから, 前 サイクルでの PO₄-P 蓄積が不十分であったことも原 因として考えられる。一方, DO 濃度が 0.24 mg/L の 場合では、高い好気的リン摂取速度が確認された。そ のため、Run 3 において PO₄-P の蓄積が十分な場合、 好気工程での DO 濃度を 0.24 mg/L まで下げても、好

Fig.14: Phosphorus removal under the low DO condition

気的リン摂取が行われることが示唆された。

4. 結 論

本研究では、脱窒性リン蓄積菌 (DPAOs) を活用した Two-sludge system において、脱窒・脱リンプロ セスの運転条件を確立するために、連続バッチ実験装置を用いた SBR 実験を実施した。SBR 実験では、嫌気→無酸素、嫌気→無酸素→好気、嫌気→分気→無酸素、嫌気→微好気プロセスを検討した。得られた知見を以下に示す。

- (1) 好気工程が10分間の再曝気、もしくは微好気 工程のみであった嫌気→無酸素、嫌気→微好気 プロセスでは運転の経過に伴い MLSS 濃度が 減少し、リン摂取能力が低下した。一方、1時 間の好気工程を含むプロセスでは、活性汚泥の 沈降性は良好に維持された。
- (2)処理プロセスの窒素・リン除去率を比較すると、 窒素除去率は嫌気→無酸素→好気プロセスが 98%と最も高く、嫌気→好気→無酸素プロセスでは脱窒が完了しなかった。リン除去率は嫌 気→好気→無酸素プロセスが 88% と最も高く、 次に嫌気→無酸素→好気プロセスで 81% と なった。
- (3) 嫌気→好気→無酸素プロセスでは,好気工程で のリン摂取により,後段の無酸素工程での DPAOsのリン摂取能力が低下した。
- (4) 嫌気→無酸素→好気プロセスでは、90日の運転により DPAOs 集積度が21%から82%まで 上昇し、全プロセスのうち最も高い集積度を示した。
- (5) 嫌気→無酸素→好気プロセスでは, BOD-SS 負荷の減少に伴い,リン除去率が低下した。嫌気
 → 無酸素 → 好気 プロセスでは,0.14 mg-BOD/mg-MLSS/d 以上の BOD-SS 負荷を確保 すると 80% 以上のリン除去率が得られた。
- (6) 嫌気→無酸素→好気プロセスにおいて、好気工 程の DO 濃度が 0.24 mg/L と低い場合におい ても 5 mgP/g-MLSS/h 以上と高い好気的リン 摂取速度を示した。

以上の活性汚泥の維持管理性, 窒素・リン除去性能, DPAOs 集積度に関する結果から,嫌気→無酸素→好 気プロセスが Two-sludge system の脱窒・脱リンプ ロセスとして最も成立性が高いことが推察された。た だし,本研究で得られた結果は,人工下水を用いた1 回の SBR 実験の結果である。そのため,再現性を確 保し,流入水質変動の影響を把握するため,実下水を 用いた連続実験により Two-sludge system 全体の運 転条件の検討をする必要がある。

参考文献

- 古澤和樹,渡瀬誠司,三好幸一郎:良好な放流水質の確保と 温室効果ガス排出量削減の両立に向けた取組について,第47 回下水道研究発表会講演集,pp.182-184 (2010)
- 2) 坂本俊彦,寺沢敏夫,平等愛子,三好孝枝:嫌気・無酸素・ 好気法と嫌気・硝化脱窒法との処理状況比較について,第47 回下水道研究発表会講演集, pp.170-172 (2010)
- 3) T. Kuba, M. C. M van Loosdrecht and J. J. Heijnen : Phophorus and nitrogen removal with minimal COD requirement by integration of denitrifying dephosphatation and nitrification in a two-sludge system, Water Res., Vol. 30, No. 7, pp. 1702–1710 (1996)
- 4) 常田聡,安祚煥,大道智孝,大野高史,平田彰:脱窒性リン 蓄積細菌を利用した新しい高度排水処理プロセス,水環境学 会誌, Vol. 25, No. 12, pp. 751-755 (2002)
- Kern-Jespersen J. P. and Henze M.: Biological phosphorus uptake under anoxic and aerobic conditions, Water Res., Vol. 27, No. 4, pp. 617–624 (1993).
- 6) T. Kuba, E. Murnleither, M. C. M van Loosdrecht and J. J. Heijnen: A Metabolic Model for Biological Phosphorus Removal by Denitrifying Organisms, Biotechnology and Bioengineering, Vol. 52, pp. 685-695 (1996)
- 7) 吉田征史,高橋紘平,齋藤利晃,田中和博:亜硝酸による好 気的リン摂取阻害を緩和する脱リン細菌の脱窒能力,環境工 学研究論文集, Vol. 42, pp. 69-79 (2005)
- 8) 庄司仁,佐藤弘泰,味埜俊:亜硝酸を電子受容体とするリン 除去汚泥の代謝能力と細菌群集構造,環境工学論文集,Vol. 41, pp.291-300 (2004)
- 9) T. Saito, D. Brdjanovic, and M. C. M. van Loosdrecht : Effect of nitrite on phosphate uptake by phosphate accumulating organisms, Water Res., Vol. 38, pp. 3760–3768 (2004)
- R. J. Zhen, R. Lemaire, Z. Yuan and J. Keller : Simultaenous nitrification, denitrification, and phosphorus removal in a labscale batch reactor, Biotechnology and Bioengineering, Vol. 84, pp. 170–178 (2003)
- 11) 庄司仁,佐藤弘泰,味埜俊:実下水処理場の生物学的リン除 去プロセスにおける脱窒性脱リン細菌の評価,水環境学会誌, Vol. 27, No. 4, pp. 255-260 (2004)
- 12) S. Tsuneda, T. Ohno, K. Soejima, and A. Hirata: Simultaneous nitrogen and phosphorus removal using denitrifying phosphate-accumulating organisms in a sequencing batch reactor, Biochem. Eng. J., Vol. 27, No. 3, pp. 191–196 (2006)
- A. Wachtmeister, T. Kuba, M. C. M van Loosdrechtand J. J. Heijnen: A sludge characterization for aerobic and denitrifying phosphorus removing sludge, Water Res., Vol. 31, No. 3, pp. 471–478 (1997)
- 14) J. Meinhold, C. D. M. Filipe, G. T. Daigger and S. Issacs: Characterization of the denitrifying fraction of phosphate accumulating organisms in biological phosphate removal process, Water Sci. Technol, Vol. 39, No. 1, pp. 31-42 (1999)
- 15) 社団法人日本下水道協会:下水試験法—1997年版—(1997)
- 16) 社団法人日本下水道協会:下水道施設計画・設計指針と解説
 -2009 年版-(2009)
- J. Wanner: Activated sludge bulking and foaming control, Technomic Publishing Company, Inc. Lancaster PA (1997)
- 18) 社団法人日本下水道協会:下水道維持管理指針—2003年版— (2003)

Development of Wastewater Treatment System Utilizing Denitrifying Phosphate Accumulating Organisms

Yoshinori Nishida¹⁾ and Ichiro Yamanoi¹⁾

¹⁾ Hitachi Research Laboratory, Hitachi Ltd.

Abstract

To reduce electricity consumptions of advanced wastewater treatments, a two-sludge system utilizing denitrifying phosphate accumulating organisms (DPAOs) has been proposed. In the two-sludge system, DPAOs for a denitrification-dephosphatation process are separated from a nitrification process. In this study, 4 sets of operational conditions of the denitrification-dephosphatation process were investigated using a sequencing batch rector. The runs with a 60-min aeration showed good sedimentation properties. The run with a 60-min reaeration following 90-min anaerobic and 120-min anoxic treatments achieved 98% of nitrogen removal and 81% of phosphorus removal. As a result, it was demonstrated this process had the feasibility as the denitrification-dephosphatation process.

Key words: Advanced wastewater treatment, Denitrifying Phosphate Accumulating Organisms (DPAOs), two-sludge system, Energy saving