画像処理型凝集センサによる凝集剤注入制御システムの実プロセスへの適用

有 村 良 $-^{1}$, 松 代 武 \pm^{1} , 毛 受 \bar{p}^{1} , 横 山 μ^{2}

¹⁾東芝インフラシステムズ㈱ インフラシステム技術開発センター (〒183-8511 東京都府中市東芝町1 E-mail:ryoichi.arimura@toshiba.co.jp) ²⁾東芝インフラシステムズ㈱ 社会システム事業部

(〒212-8585 神奈川県川崎市幸区堀川町72-34 E-mail:suguru.yokoyama@toshiba.co.jp)

概 要

顕微鏡電気泳動法を応用し、原水の水質変動や凝集剤の過不足に伴うフロックの荷電状態の変化 をリアルタイムで定量化(可視化)する画像処理型凝集センサと、本センサを用いた凝集剤注入率 のフィードバック制御システムを開発した。実証試験において、従来の原水濁度に応じた凝集剤注 入率の設定方式と比較し、沈澱池出口濁度を同等に維持した状態で凝集剤注入率を抑制できること を確認した。また、原水濁度やアルカリ度およびpHの変動に対応して注入率を制御でき、オペ レータの負担軽減に寄与できるシステムとなる見込みを得た。

キーワード: 浄水処理,凝集,画像処理,フィードバック制御 原稿受付 2021.6.4 原稿受理 2021.8.6

EICA: 26(2 · 3) 5-15

1. はじめに

全国の多くの浄水場では凝集沈澱-砂ろ過の急速ろ 過システムが用いられており, 計画処理量ベースで約 78% を占める¹⁾。急速ろ過システムでは、ダム湖水や 河川水といった原水に対して凝集剤を添加し、懸濁質 やコロイドを集塊させてフロックを形成し沈降除去し ている。凝集剤としてはアルミニウム系凝集剤が主に 用いられており、なかでもポリ塩化アルミニウム(以 下、PACI) が凝集剤使用量全体の約9割を占めてい る²⁾。凝集剤注入率の設定は、後段の沈降プロセスや ろ過プロセスの処理状況に応じて、オペレータの判断 で注入率を手動で設定する方法や、原水濁度に応じて 自動で注入率を変更するフィードフォワード制御(以 下,FF 制御)が主に用いられている。凝集剤が不足 すると沈澱池出口濁度やろ過池出口濁度が上昇し、ま た過剰に注入されると汚泥量の増加やアルミニウム濃 度上昇につながるため、凝集剤注入率を適切に設定し、 生成するフロックの状態を良好に維持することは非常 に重要である。しかしながら、刻々と変化する原水水 質に対して、フロックの状態を良好に維持するために は、設定した注入率の再検討や見直しが常に必要であ りオペレータの負担となっている。凝集剤の注入不足 による処理水質悪化を避けるため、あらかじめ余裕を もって注入率を高めに設定し、薬品費や汚泥処分費の 増加につながっているケースもある。

このような背景のもと,凝集剤注入率の設定方法や 凝集不良の検知方法の解決策として各種の提案がされ てきた。この中には、粒子の荷電状態の相対値である 流動電流値や凝集剤添加後の混和水に含まれる残留ア ルミニウム濃度を指標としたフィードバック制御³⁴ (以下,FB制御)、フロック形成池のフロック粒径を 吸光度の平均値と標準偏差から測定し、凝集不良を早 期に検知する方法⁵⁰などがある。また近年では AI 技 術であるディープラーニングを活用し、フロック画像 から凝集剤の過不足を判定するモデル⁶⁰、フロック画 像から処理水濁度を推定するモデル⁶⁰、フロック画 れている。これらの手法はいずれも生成するフロック の状態を直接的または間接的に捉えるものであり、原 水水質だけでなく、凝集剤注入後のフロックの状態を 確認することを重要視している。

フロックの状態の判別指標に、従来から知られてい るゼータ電位(表面荷電、表面電位)がある⁸⁻¹¹⁾。原 水中の懸濁質やコロイドといった粒子は通常-30~ -20 mV のゼータ電位で負に帯電しており、相互に 反発しあって水中に存在する。PACI などのアルミニ ウム系凝集剤は、水中で正電荷のポリマーとなり、粒 子の荷電を中和することで粒子間の反発力を低下させ、 凝集が進みやすい状態にする。粒子には反発する力と、 ファン・デル・ワールス力(分子間力)による吸引す る力の両者が働いているため、吸引する力が上回るま で荷電中和を進めることが凝集剤注入率設定において 重要となる。目安としては、フロックのゼータ電位が -10 mV~+10 mV に入るように凝集剤を注入する ことで凝集反応が進みやすい状態となる⁸⁾。また、浄 水場において凝集剤注入後のゼータ電位をオフライン で毎日測定し、プランクトンによる凝集阻害発生時や 粉末活性炭注入時および原水濁度上昇時において凝集 剤注入率調整の参考にしている事例もある¹²⁾。ゼータ 電位の測定技術としては種々の提案がされているが. 筆者らは電圧をかけた際の粒子の移動方向と移動速度 から、凝集状態の可視化と凝集剤の過不足状態の定量 化を両立できるという視点で顕微鏡電気泳動法に着目 し、オンラインの制御用センサとして利用することを 発案した。これは、実際の浄水場の運転においては、 凝集剤注入率を適切に設定することに加え、オペレー タにとって凝集剤の増減の理由がわかりやすいという ことも重要であるとの考えに基づいている。筆者らが 開発したのは顕微鏡電気泳動法の原理を応用して、原 水の水質変動や凝集剤の過不足に伴うフロックの荷電 状態の変化をリアルタイムで定量化(可視化)する画 像処理型凝集センサ(以下,画像凝集センサ)と、本 センサを用いた凝集剤注入率の FB 制御システムであ る。本システムでは、凝集剤注入後のフロックの荷電 状態を画像処理により移動速度として数値化し、この 移動速度を制御量として、移動速度(すなわち荷電状 態)の目標値(以下,SV)に対して凝集剤注入率を FB 制御する。2018 年度より埼玉県企業局行田浄水場 において実証試験を行い.年間を通した浄水場の原水 (着水井流出水)の水質変動に対して本システムが適 応でき, SV を適切に設定することで良好な処理水質 が得られることを確認した13-16)。2019年1月から12 月に実施した実証試験では、各季節の原水に対する FB 制御の適応性の確認と SV 設定に関する基礎デー タの収集に基づき,FB 制御が浄水場の凝集プロセス に適用できることを確認した¹³⁻¹⁵⁾。また、実際に発生 した高濁度原水に対し、濁度の増減に応じて凝集剤注 入率を自動制御し, 沈澱池出口濁度を1度以下に維持 することができ、高濁度原水へも適応可能であること を確認した16)。

本論文では、開発した画像凝集センサを用いた FB 制御システムの適用効果について、行田浄水場にて 2020年7月から11月の期間に行った実証試験結果を 用いて報告する。当該実証期間において、国内の浄水 場で広く利用されている原水濁度に応じた凝集剤注入 率の FF 制御と比較評価を行い、FB 制御の適用によ る凝集剤注入率の抑制効果と、運用におけるオペレー タの負担軽減効果を確認した結果を報告する。

本論文の構成を以下に説明する。2章に開発した FB 制御システムと画像凝集センサの概要を示し,FB 制御における SV 設定の考え方について示す。3章に 実証試験で用いたラボスケールの凝集沈澱-急速ろ過 装置の概要と試験方法について述べ,4章にFB 制御 とFF 制御の評価方法を示す。5章にその試験結果を 示し,6章に考察を述べる。そして7章に本論文の結 論をまとめ、開発した FB 制御が、適切な凝集剤注入 率の設定とオペレータの負担軽減に寄与できる技術で あることを示す。なお実証試験は(潮水道技術研究セ ンターの公募型実証研究支援事業(A-IDEA)におい て実施したものである。

開発した FB 制御システムと画像凝集センサ

2.1 FB 制御システムの構成

筆者らが開発した画像凝集センサを用いた凝集剤注 入率のFB制御システムをFig.1に示す。浄水場の混 和池(急速撹拌池)出口で混和水を採水し,ポンプで 画像凝集センサまで送水する。画像凝集センサ内の画 像取得部は顕微鏡電気泳動法の原理に基づき構成され ており,混和水中のフロックの電気泳動中の画像を秒 単位で取得し,通信ケーブルを介して画像処理部に伝 送する。画像処理部では秒単位で取得した画像を処理 し,フロックの移動速度を数値化する。移動速度の計 測周期は約5分である。

Fig. 1 Flow diagram of coagulant dose control system

制御コントローラでは移動速度を制御量とし,SV に対して産業界で汎用的に用いられている PI(比例・ 積分)制御方式で凝集剤注入率を FB 制御する。SV はオペレータが任意の値を設定できる。制御コント ローラでは(1)~(3)式で示す PI 制御式により凝集 剤注入率 PACI(t) を算出する。

$$e(t) = SV(t) - PV(t)$$
(1)

$$\Delta PACI(t) = Kp \times ((e(t) - e(t - \Delta t)) + (\Delta t / Ti) \times e(t))$$
(2)

$$PACl(t) = PACl(t - \Delta t) + \Delta PACl(t)$$
(3)

e(t):時刻tの入力偏差 [µm/s]
e(t-Δt):時刻t-Δtの入力偏差 [µm/s]
SV(t):移動速度目標値(上位端末から設定)[µm/s]
PV(t):移動速度現在値 [µm/s]
ΔPACl(t):凝集剤注入率差分の演算結果 [mg/L]
Kp:比例ゲイン [-]

```
Ti:積分時間 [min]

⊿t:制御周期 [min]

PACl(t):時刻tの凝集剤注入率演算結果 [mg/L]
```

2.2 画像凝集センサの処理フロー

画像凝集センサは、①画像取得部内の測定セルへの 混和水通水と封入, ②電圧を印可し電気泳動中のフ ロックの画像を秒単位で3分間取得, ③測定セルから の混和水排水と水道水による洗浄.までを1サイクル とし (①→②→③), バッチ式で連続測定を繰り返す。 混和水は常時,画像凝集センサに送水された状態で運 用する。1 サイクルは約5分であり、②での画像取得 終了から移動速度更新までの遅れ時間は数秒程度であ る。画像処理中の電気泳動の軌跡は監視用モニタ画面 で観察することができるため、荷電中和の進み度合い を視覚的にも観察できる。測定画面例を Fig. 2 に示 す。電気泳動中のフロックは必ずしも電極方向(水平 方向) に動くわけではないが、画像処理により電極方 向の移動速度を抽出し数値化している。Fig.2におい て、荷電が中和されていない状態ではフロックは+極 側に大きく動き,荷電が中和されてくると動きが小さ くなる。移動速度が0µm/sに近くなるほどフロック 間の反発力が小さくなり、凝集が進みやすい状態とな る。これにより、フロックが+極側に移動していると

Fig. 2 An example of image recognition technique in microscopic electrophoresis measurement

Fig. 3 An example of electrophoretic velocity of charged particles

凝集不良の傾向があり,一極側に移動すると過剰注入 の傾向があることが視覚的にも分かりやすいものと なっている。Fig.3に,凝集剤未注入の原水とPACI 注入率42 mg/Lの混和水の移動速度の分布を示す。 個々のフロックの電極方向の移動速度はばらつきを 持っているが,異常値を除去した後,平均処理するこ とで1サイクルにおける移動速度を算出している。

その他,画像処理センサには測定セル部の汚れ除去 を目的とした薬品洗浄機能と,周囲の温度環境の変動 を起因とする測定セル部の結露対策機能を実装してい る。これらの機能により汚染除去性能とオンライン計 器としての正確性を維持できるように工夫した。また, これらの機能の有効性は,ゼータ電位が既知の標準物 質を用いて,正確性が維持できていることで確認した。

2.3 FB 制御における SV 設定

Fig.4 に行田浄水場で取得した SV と PACl 注入率 ならびに沈澱池出口濁度の関係を示す。Fig.4は 2019年に実施した、年間を通した実証試験結果15)を もとに作成したものである。SV を荷電中和側(0 μm/s 近く)に設定するほど PACl 注入率は高くなり、 沈澱池出口濁度は低下することを、各季節で共通して 確認している。Fig.4の関係をもとに、各季節におい て沈澱池出口濁度の管理目標値に対応する SV を設定 する。水温などの原水水質の変化により同じ SV で あってもフロックの形成状況や沈澱池での沈降性が異 なるため、各季節でSV を変更することでこれに対応 する。また、移動速度で捉えているのはフロック間の 反発する力であるが、これとは別にフロックにはファ ン・デル・ワールス力(分子間力)による吸引する力 が働いており、両者の力のバランスと沈澱池出口まで 残留する濁度を考慮して SV を設定することが重要と なるため, SV は必ずしも 0 µm/s としていない。こ れに関連して, 複数箇所の浄水場において混和水を採 水し移動速度の測定を行ったところ -3~-1 µm/s 程度の範囲であり、0 µm/s となるまで凝集剤を注入

Fig. 4 Relationship between electrophoretic velocity of charged particles, coagulant dose and residual turbidity

していないケースが多いことを確認している。なお高 濁度原水発生時においては別途,SVの調整が必要と なるが,原水濁度に対応したSVの自動調整方法¹⁶⁾を 報告済みである。

実証試験の概要

3.1 実証試験装置

埼玉県企業局行田浄水場内にプレハブを建て、内部 に実証試験装置を設置した。処理フローを Fig.5 に 示す。凝集剤が未注入の着水井流出水を、常時、ポン プを使って実証試験装置に送水した。実証試験装置は、 原水槽、混和池~フロック形成池~沈澱池~砂ろ過池 (同一仕様の2系列), PACI 貯留槽, 画像凝集センサ および各制御コントローラを内蔵した監視制御装置 (図示せず)から構成される。凝集沈澱処理までは24 時間連続で運転し、砂ろ過池は沈澱池の汚泥排出やセ ンサメンテナンスを行った有人作業日の日中に運転し た。2系列のうち、開発系で画像凝集センサを用いた PACl 注入率の FB 制御,比較系で着水井流出水の濁 度と PACI 注入率のテーブルを使った FF 制御を行っ た。凝集剤は塩基度 50%の PACl を使用した。行田 浄水場では、凝集剤注入後の pH が適切な範囲となる ように着水井で pH 調整が行われているため、実証試 験装置では pH 調整は行わなかった。

Fig. 5 Overview of demonstration plant

3.2 試験条件と運転条件

本論文の報告対象は、2020年7月から11月の間で ピーク濁度100度以上の高濁度発生期間を除いた期間 とした。評価期間中,下記に示すRUN-1~RUN-3の 試験を実施し,同じ原水に対するFB制御とFF制御 の比較評価を実施した。なお、実証試験期間中の原水 濁度が100度を超える高濁度期間においても,FB制 御により沈澱池出口濁度1度以下の良好な処理水質を 維持しつつ,原水濁度の増減に応じてPACI注入率を 制御できることを確認している。高濁度期間における FB 制御とFF 制御のPACI注入率調整の差異につい ては今後検証する予定である。

RUN-1

FB 制御と FF 制御の PACl 注入率調整の差異によ る沈澱池出口濁度への影響の把握を目的とした夏期試 験。処理流量を本実証試験装置の標準流量 0.4 L/min から 0.6 L/min に変更することで滞留時間を短くし, また傾斜板を未設置として実施した。これらの条件変 更により沈澱池におけるフロックの除去性を低下させ, FB 制御と FF 制御の PACl 注入率調整の差異が,沈 澱池出口濁度に反映され易くなることを意図したもの である。

RUN-2

9月上旬の高濁度経過後に平常時レベルの原水濁度 に戻ってから,FB 制御による PACI 注入率の抑制効 果のポテンシャル把握を目的とした秋期前半の試験。 RUN-2 以降は、台風などによる高濁度発生に備える ため、滞留時間は標準仕様とし、傾斜板を設置した。 RUN-3

原水水質の変動(特に, pHの日間変動)に対する FB制御とFF制御のPACl注入率の調整の差異を把 握することを目的とした秋期後半の試験。

運転条件を Table 1 に示す。混和池の処理流量は
 8.0 L/min, フロック形成池以降は 0.6 L/min (RUN-1)
 もしくは 0.4 L/min (RUN-2, -3) とした。混和池流
 量が多いのは,画像凝集センサが毎分 4 L 程度の混和
 水を必要とするので,実証試験装置において混和池の
 みを大きく設計したためである。

試験期間の着水井流出水の濁度,水温,pH および 原水アルカリ度を **Fig. 6~9** にそれぞれ示す。着水井 流出水の濁度は,RUN-1 と RUN-2 の間に 2 回 (**Fig. 6**①,②),RUN-2 と RUN-3 の間に 1 回 (**Fig. 6**③), 高濁度となった。RUN-1 の前半で 60 度程度まで濁度 上昇があったが,その他は濁度 10 度前後で推移して いた。水温は,RUN-1 前半の濁度上昇の終了後に梅

 Table 1
 Experimental equipment specifications and operating conditions

プロセス	仕 様		運転条件	
凝集沈澱	混和池	容量:21.8 L	各 RUN 共通	滞留時間:2.7 min G値:236 s ⁻¹
	フロック 形成池	容量:16.0 L	RUN-1	滞留時間:27 min GT 值:43,000
			RUN-2, -3	滞留時間:40 min GT 值:65,000
	沈澱池	容量:30.0 L (傾斜板付)	RUN-1	滞留時間: 50 min
			RUN-2, -3	滞留時間:75 min
砂ろ過	沈澱池越流水をポンプ で送水,砂層厚:約50 cm,有効径:0.5 mm		各 RUN 共通	ろ過速度:140 m/日 (有人作業日のみ運転)

2020/7/18 2020/8/20 2020/9/22 2020/10/25 2020/11/27

Fig. 7 Changes in temperature of raw water

Fig. 8 Changes in pH of raw water

Fig. 9 Changes in alkalinity of raw water

雨が明けたこともあり、大きく上昇した(Fig.7④)。 RUN-1の8/16に最高水温27.9℃を記録した。9月中 旬からは緩やかに低下した。pHは、行田浄水場の運 用における硫酸注入のため、取水pHよりも着水井流 出水pHは中性側に下がっていた。pHには日間変動 がみられ、特にRUN-3の後半に顕著に現れた。昼間 にpHが上昇していることから植物プランクトンの活 動によるものと推測する。原水アルカリ度は、高濁時 に一時的に下がる傾向があったが、RUN-1~RUN-3 の期間では30 mg/L以上であり、充分確保されてい たと考える。

FB 制御の PACl 注入率は制御周期 4.5 分で更新した。これは,画像凝集センサでの移動速度測定の計測 周期を1サイクル 4.5 分として運用したためである。

Table 2Set value of the control target of the electrophoretic
velocity in FB control

試験条件	期 間	SV (µm/s)
RUN-1	$7/18 \sim 9/6$	
前半	$7/18 \sim 7/28$	-2.0
後半	$8 / 7 \sim 9 / 6$	$-5.0 \sim -4.0$
RUN-2	9 /13~10/ 3	$-5.0 \sim -4.0$
RUN-3	10/31~11/21	-3.5

Table 3 Set value of coagulant dose rate in FF control

原水濁度 (度)	PACl 注入率 (mg/L)		
(着水井流出水)	RUN-1(夏期)	RUN-2,-3 (秋期)	
0~5	23.1	23.1	
5~10	26.4	26.4	
10~20	32.0	29.0	
20~30	37.0	34.0	
30~50	43.0	40.0	
50~70	49.0	49.0	
70~100	55.0	55.0	

各期間のSV を Table 2 に示す。RUN-1 の途中で水 温が大きく変化したためSV の見直しを行っている。 FF 制御の PACI 注入率は,着水井流出水の濁度と PACI 注入率のテーブルに基づいて自動で制御した。 Table 3 に FF 制御の設定値を示す。設定値は,同じ 原水を処理している行田浄水場で使用している PACI 注入率の FF 制御の設定値を参考に設定した。

3.3 測定方法

FB 制御と FF 制御における沈澱池出口濁度は,1 台のレーザー式濁度計(東芝製 LQ142 型)を5分毎 に切り替えて測定し,監視制御装置で記録した。ろ過 池の運転は有人作業日の昼間10時~15時頃に実施し, ろ過開始から充分な時間が経過した後,高感度濁度計 (日本電色工業製 NP 500T)を用いてろ過水濁度を測 定した。アルミニウム濃度は,総アルミニウム濃度を ICP 発光分光分析法で分析した。混和水のpH は電極 式 pH 計(東亜ディケーケー製 HM-31P)を各混和池 出口に設置して常時測定し,監視制御装置で記録した。

4. 評価方法

4.1 画像凝集センサの精度確認方法

画像凝集センサの運用状態は、ゼータ電位が既知の 標準物質を用いて、有人作業日の午前中に FB 制御を 一旦停止し、注射器を用いて標準物質を測定セル部に 注入後、移動速度を測定し確認を行った。移動速度か らゼータ電位への変換はスモルコフスキの式 17)を用 いた。本センサでは水温 25 ℃において移動速度 1 µm/s がゼータ電位 2.6 mV となる (水温 15 ℃では 3.3 mV)。ゼータ電位の標準物質は、筆者らの事業所内 実験室において、定期的にアクリル単分散粒子(平均 粒子径 1.5 µm)から作成し,別途,ゼータ電位測定 装置(三洋貿易㈱製 Model 502 改良型)でゼータ電 位を確認した後,実証試験先に送付して使用した。な お,標準粒子は三洋貿易㈱より提供されたものであ り,本標準粒子を pH が管理された緩衝液に溶解させ た溶液はゼータ電位として 61 mV±10%の範囲とな ることから,この範囲を本標準粒子の規格値の範囲と 定義して用いた。

4.2 FB 制御と FF 制御の比較評価方法

各 RUN における FB 制御と FF 制御の PACI 注入 率および沈澱池出口濁度を時系列グラフで可視化し, 制御中の挙動を比較した。同一期間の PACI 注入率の 平均値と標準偏差から PACI 注入率の抑制効果を評価 した。ろ過水の濁度とアルミニウム濃度は,クリプト スポリジウム等の対策指針と水質基準の観点から評価 した。FB 制御と FF 制御の PACI 注入率の違いが顕 著に表れている期間については時系列グラフを拡大し, 原水水質と凝集反応の関係に基づいて考察を行った。 また,各制御における混和水 pH のばらつきから制御 性の違いを考察した。

なお,FB 制御適用時に移動速度がSV に対して良 好に追従することは報告済み¹³⁻¹⁵⁾であるので,本論文 では,同じ原水を処理した際のFB 制御とFF 制御の 比較検証に絞って報告する。

5. 試 験 結 果

5.1 画像凝集センサの精度確認

Fig. 10 に標準物質の測定結果を示す。実証試験期 間中,標準物質のゼータ電位の規格値範囲内(61 mV±10%)を常に維持できていることがわかる。4 週間間隔で実施したセンサ測定部の汚染除去を目的と した硫酸(0.1 M)洗浄が有効に機能していたと考え る。特に,9月上旬の2回の高濁度経過後でも規格値 範囲を維持できていた。

Fig. 10 Measurement results of standard particles of zeta potential

5.2 FB 制御と FF 制御の比較評価

Fig. 11~Fig. 13 に RUN-1~RUN-3 における FB 制御の PACI 注入率, FF 制御の PACI 注入率, FB

Fig. 11 Comparison of coagulant dose and residual turbidity in FB and FF control (RUN-1)

Fig. 12 Comparison of coagulant dose and residual turbidity in FB and FF control (RUN-2)

Fig. 13 Comparison of coagulant dose and residual turbidity in FB and FF control (RUN-3)

制御の沈澱池出口濁度および FF 制御の沈澱池出口濁 度を示す。各時系列グラフにおいて半日程度データが 欠損している期間があるのは,沈澱池の汚泥排出やセ ンサメンテナンスおよび標準粒子の測定を行った時間 帯である。なお時系列グラフでは図示しないが,各 RUN の FB 制御において SV に対する移動速度の良 好な追従性は確認できている。

RUN-1前半(7/18~7/28)は、60度程度までの濁 度上昇があった期間であり、FB 制御、FF 制御とも に濁度の上昇に伴って PACI 注入率を増加していた。 7/28~8/7の期間は、Fig.7(④)で示した梅雨明け後 の水温の上昇があり、季節的な原水水質の変動に対す る SV の再調整を行った期間である。8/7~8/17の PACI 注入率は、FB 制御のほうが高い期間と、FF 制 御のほうが高い期間の両方が見られたため(⑤)、原 水水質と凝集反応の関係に基づいた考察を後述する (6.1節)。8/17 以降は、FB 制御のほうが低い PACI 注入率で推移していた。沈澱池出口濁度は、RUN-1 全体を通して FB 制御と FF 制御に大きな違いは見ら れず,処理流量を上げたことで沈澱池出口濁度の差が 顕在化するものではなかった。

RUN-2では, FB 制御による PACl 注入率抑制効果 を把握するために、荷電中和側からより離れた SV を 設定した。これは Fig. 4 の関係に基づき, 沈澱池出 口濁度1度未満を達成しながら PACI 注入率抑制を図 ることを考えた SV の設定である。沈澱池出口濁度の 管理値を1度未満としたのは、後段の急速ろ過を安定 的に続けるための目標値18)を参考にしたものである。 **Fig. 12**の前半(⑥, 9/13~9/15)は, 高濁度原水後 の濁度下降期であり、FB制御、FF制御ともにPACI 注入率が減少した。Fig. 12の初期から、FB 制御のほ うが低い PACl 注入率で推移していたが、これは SV を荷電中和側からより離れた設定としたためである。 しかしながら、濁度40度程度まで上昇した際は(⑦). FB 制御においても, FF 制御と同様に PACI 注入率 の増加と減少を行うことができていた。沈澱池出口濁 度は、RUN-2 全体を通して FB 制御のほうが高めで あったが、1度未満で処理できていることから、沈澱 池出口濁度の上昇を抑えつつ PACl 注入率が抑制でき ていたと考える。

RUN-3 では, 原水水質の変動(特に, pHの日間 変動)に対する FB 制御と FF 制御の PACl 注入率の 調整の差異を評価した期間である。RUN-3 の期間全 体を通した PACl 注入率の平均値は FB 制御で 24.6 mg/L, FF 制御で 25.8 mg/L と同程度であった。一

Fig. 14 Evaluation result of coagulant dose

(RUN-1~RUN-3)

方,後半の11/12~11/18(⑧)ではFB制御においてPACl注入率の日間変動が見られた。これは着水井 流出水 pHの日間変動を反映した結果と考えるが,各 制御の混和水 pHのばらつきと合わせた考察を後述する(6.2節)。沈澱池出口濁度は,RUN-3全体を通し てFB制御とFF制御に大きな違いは見られなかった。 このことから,特に,pHがアルカリ側から中性側に 下がった際に,PACl注入率を抑制することができ, FB制御の適用によりこの抑制を自動で行うことがで きると考える。

各 RUN における FB 制御と FF 制御の PACI 注入 率および沈澱池出口濁度の比較を Fig. 14 と Fig. 15 に示す(標準偏差をエラーバーで図示)。RUN-1 と RUN-3 における PACI 注入率抑制効果は 8% および 4% であり,沈澱池出口濁度を同程度に維持しつつ PACI 注入率を削減できていた。また RUN-2 では, 沈澱池出口濁度は FB 制御のほうが 0.2 度ほど上昇し たものの,1 度未満に充分処理できており,この期間 の PACI 注入率抑制効果は 41% と高い効果が確認で きた。

Fig. 16 と Fig. 17 に RUN-1~RUN-3 を通したろ過 水濁度とアルミニウム濃度の測定結果を示す。全期間 においてろ過水濁度は 0.1 度未満であり,クリプトス ポリジウム等の対策指針を下回っていることを確認し た。沈澱水アルミニウム濃度は 0.2~0.6 mg/L で推移 していたが,FB 制御と FF 制御における PACI 注入 率と沈澱水アルミニウム濃度に明確な関係性は確認で

Fig. 15 Evaluation result of residual turbidity

きなかった。PACI 注入率が高いほど沈澱池出口まで 残留するアルミニウム濃度が高くなると予想していた が,水温や撹拌強度(GT 値)といったその他の条件 にも影響を受けたためと推測する。一方,ろ過水にお いてはアルミニウム濃度の水質基準 0.2 mg/L を下 回っていることを確認した。

6.考察

6.1 複数の水質の変動に伴う制御性の比較

RUN-1の期間⑤前半(8/11~8/12)はFB制御の ほうがPACl注入率は高く、後半(8/13)はFF制御 のほうが高かった。Fig. 18~Fig. 20に時系列グラフ を拡大して評価する。期間⑤前半は着水井流出水濁度 の上昇はなかったが、FB制御ではPACl注入率を増 加していた。同時間帯に着水井pHがアルカリ側に上 昇していることが伺える。pHがアルカリ側に傾くと PAClの荷電中和力が下がるため¹⁹⁾、FB制御ではフ ロックの荷電状態を維持するためにPACl注入率を増 加していたと推測する。一方、FF制御では濁度が変 化していないためPACl注入率は増加していなかった。 次に、期間⑤後半では、8/13の0時過ぎから濁度が 上昇したことを受けて、FF 制御ではPACl注入率を

Fig. 18 Comparison of coagulant dose and raw water turbidity (RUN-1(⑤))

(RUN-1(5))

増加していた。一方、同時間帯に着水井 pH は 7.3 付 近から7.1まで下がっており、同様に原水アルカリ度 も下がっていた。pH がアルカリ性側から中性付近に 近づくと、フロック形成がより進みやすい適正凝集 pHになり、必要な PACl 注入率も少なくなる。期間 ⑤後半の FB 制御では、濁度上昇による PACI 注入率 増加と、pH が中性付近に傾いたことによる PACl 注 入率の減少が同時に発生していると推測され、結果と してフロックの荷電状態の変化がなかったため PACI 注入率が変化しなかったと考える。期間⑤後半におい て FB 制御と FF 制御の沈澱池出口濁度に差は見られ ないことから、原水濁度のみに基づいた PACI 注入率 の増加は必ずしも必要ではなく、FB 制御は複数の水 質の変動が与える凝集状態の変化に基づいて PACI 注 入率を制御していることから、PACIの過剰な注入の 抑制につながると考える。

実証試験における FF 制御は, 原水濁度と PACl 注 入率のテーブル制御を用いたが, (4)~(6) 式のよう な演算式 (濁度式) を使用している浄水場もある²⁰⁾。

$PACl(t) = a \times Turb$	$(t)^{n} + \alpha$	(4))
---------------------------	--------------------	-----	---

 $PACl(t) = a \times Turb(t)^{n} + CF + \alpha \qquad (5)$

 $PACl(t) = a \times Turb(t)^{n} \times Alk(t)^{m} + \alpha \qquad (6)$

PACl(t):時刻 t の凝集剤注入率演算結果 [mg/L] Turb(t):時刻 t の原水濁度 [度] Alk(t):時刻 t の原水アルカリ度 [mg/L] a, n, m:パラメータ [-], (n, m, は正の値) CF:ろ過水濁度補正値 [mg/L] α:手動補正値 [mg/L]

濁度式の一般的な運用としては、濁度やアルカリ度 のパラメータ a, n, m を原水水質の変動に合わせて 常時調整することは困難であることから、パラメータ α(手動補正値)を調整しているケースが多い。(6) 式を用いた場合、原水濁度(Turb)が上昇すると PACI注入率は増加し、原水アルカリ度が低下すると PACI注入率は減少する。

FB 制御では, 濁度, pH およびアルカリ度の変動 があった際は, SV に応じてフロックの荷電状態を適 切に保つために PACl 注入率を自動で調整していたが, これは濁度, pH およびアルカリ度の変動時は荷電状 態を保つために必要な凝集剤注入率が変化することを 示している。(6)式を使用した場合でも濁度やアルカ リ度の変化によって PACl 注入率は可変となるが, n や m が固定であれば,必ずしも荷電状態を一定に保 つのに必要な PACl 注入率を求められるとは限らない。 そのため実際の運転においては,処理水質の状況に応 じてオペレータが都度,手動補正値αを調整してい るケースが多い。一方,FB 制御ではこのようなパラ メータの手動調整を行うことなく,自動でフロックの 荷電状態を一定に保つ調整が行われるため,従来方式 のFF 制御と比較して原水水質変動への対応度が高く, オペレータの負担軽減にもつながると考える。

6.2 pH 変動に対する制御性

Fig. 21 に PACl 注入率の大きな日間変動が見られ た RUN-3(⑧)を拡大して示す。FB 制御の PACl 注 入率が高くなるのは日中 12 時から 18 時であり,低く なるのは早朝 6 時前後であった。Fig. 22 に着水井流 出水 pH, FB 制御と FF 制御の混和水 pH を示す。着 水井流出水 pH は 12 時から 18 時にアルカリ側に高く なっていることから,FB 制御における PACl 注入率 の調整は,pH がアルカリ側に傾いたことで PACl の 荷電中和力が下がったためと考える。FF 制御では濁 度が変化していないため PACl 注入率は一定であり, 混和水 pH は着水井 pH と同じ周期性で変動していた。 Fig. 23 に同期間の分単位の pH 値のヒストグラムを 示す。着水井流出水 pH は 7.20~7.50 の範囲であり,

1500 着水井流出水pH **H** 1000 500 վիկիկին հատարին։ 1500 FB制御 混和水pH **1000** 띩 500 1500 FF制御_混和水pH 類 1000 類 500 0 7.10 7.15 7.15 7.25 7.30 7.35 7.35 7.45 7.45 6.90 6.95 7.50 7.55 6.80 6.85 7.05

Fig. 23 Comparison of pH histograms (RUN-3((8)))

PACl 注入率が一定であった FF 制御の混和水 pH は 6.95~7.15 に分布していた。これに対して FB 制御の 混和水 pH は 7.00~7.10 の狭い範囲で分布しており, 混和水 pH の変動が小さくなるよう PACl 注入率を調 整していたことがわかる。

水道維持管理指針²⁰⁾には、凝集反応に影響を与える 要因としては、撹拌強度、pH、アルカリ度、水温等 が複雑に作用していると記載されており、凝集剤注入 後の pH (混和水 pH)を適切な範囲に維持すること の重要性が述べられている。また、原水に藻類が多量 に含まれていると、ろ過池閉塞やろ過水への漏洩を引 き起こすことがあるので、凝集剤注入率を高めにする とともに、pH やアルカリ度の管理に充分留意する点 が挙げられている。これらを考慮すると、原水 pH (着水井流出水 pH)の変動に伴い PACI 注入率を自動 で調整し、特にアルカリ側への変動に関しては PACI 注入率を増加するとともに、混和水 pH の変動を抑制 している FB 制御は、より安全な凝集剤注入制御の実 現につながるものと考える。

7. まとめ

本論文では,筆者らが開発した画像処理型凝集セン サと,本センサを用いた凝集剤注入率のFB制御シス テムからなる新たな凝集剤注入率制御システムについ て示し,行田浄水場での実証結果に基づき開発した制 御方式の適用効果について,従来方式のFF 制御と比 較評価した結果について述べた。実証により得た結果 を以下に示す。

- (1) 画像凝集センサを用いた FB 制御を浄水場の凝集 沈澱プロセスに適用することで,従来方式の FF 制御と比較し,沈澱池出口濁度を同程度に維持し つつ 4~8% の PACl 注入率抑制効果があった。 また,沈澱池出口濁度は FF 制御よりも 0.2 度ほ ど上昇したものの,1 度未満に充分処理できてい た期間では 41% の高い抑制効果があった。
- (2) FB 制御は、原水の濁度、pH およびアルカリ度の変動に対して、フロックの荷電状態を維持するように PACI 注入率を調整するため、原水水質変動に対する対応度が高く、これにより浄水場で行われているオペレータによる手動調整の負担軽減につながる見込みが得られた。
- (3) FB 制御は原水 pH の変動に対応して PACl 注入
 率を増減するため、結果として混和水 pH (凝集 pH)の変動を抑制する。

以上により,開発した FB 制御が浄水場の凝集剤注 入制御に適用でき,オペレータの負担軽減につながる 技術であることを実証できた。実証試験において SV 設定は手動であったが,SV 調整の頻度は季節ごとも しくは月単位といった間隔で対応可能と考えている。 今後は、このSV 設定も自動化することでオペレータ の更なる負担軽減を図るシステムを構築していく。

謝 辞

実証試験に協力いただいた公益財団法人 水道技術 研究センターおよび埼玉県企業局行田浄水場の関係者 各位に感謝の意を表する。

参考文献

- 1) (跡水道技術研究センター 水道ホットニュース 738号
- 2) 公園水道技術研究センター 水道ホットニュース 749号
- 福田美意,村山清一,阿部法光,黒川太,毛受卓,服部大, 寺崎啓二,居村研二:流動電流値を指標とした凝集剤注入制 御の実用化,環境システム計測制御学会誌,20 (2-3),pp. 19-26 (2015)
- 4) 三宮豊,横井浩人,田所秀之,舘隆広:アルミニウムを用いたPAC注入制御方式の実証,環境システム計測制御学会誌, 17 (2-3), pp. 143-149 (2012)
- 5) 山口由香,久本祐資,山口太秀,鎌田素之,相澤貴子,海老 江邦雄:急速ろ過システムにおけるフロックセンサーによる 凝集不良の早期検知に関する検討,環境システム計測制御学 会誌,20 (2-3),pp.72-75 (2015)
- 6) 林益啓,古賀大輔,山本雅人,飯塚博幸:機械学習/ディープ ラーニングを用いたフロック画像による凝集制御の実用可能 性,令和元年度全国会議(水道研究発表会)講演集,pp. 418-419 (2019)
- 7) 山村寛, Ery Utami Putr, 渡辺義公:凝集フロック画像の畳 み込みニューラルネットワーク解析による沈降性予測モデル の構築,令和元年度全国会議(水道研究発表会)講演集,pp. 420-421 (2019)
- 8) 丹保憲仁:水処理における凝集機構の基礎的研究(I) 理論的

考察,水道協会雑誌,361号,pp.1-11 (1964)

- 9) 丹保憲仁:水処理における凝集機構の基礎的研究(Ⅱ) 顕微鏡 電気泳動法によるゼータ電位の測定,水道協会雑誌,363号, pp.1-23(1964)
- 10) 丹保憲仁:水処理における凝集機構の基礎的研究(Ⅲ) 硫酸ア ルミニウムによる粘土系濁質凝集,水道協会雑誌,365号, pp.27-39 (1965)
- 11) 丹保憲仁:水処理における凝集機構の基礎的研究(Ⅳ) 硫酸ア ルミニウムによる天然有機着色水の凝集,水道協会雑誌,367 号,pp.43-50 (1965)
- 大方正倫:ゼータ電位を指標とした凝集剤注入率の評価,平成29年度全国会議(水道研究発表会)講演集,pp.354-355 (2017)
- 有村良一,黒川太,毛受卓,横山雄:画像処理型凝集センサ による水質制御システム ~ 浄水場における実証試験(I)~, 令和元年度全国会議(水道研究発表会)講演集, pp. 422-423 (2019)
- 14) 有村良一,黒川太,毛受卓,横山雄:画像処理型凝集センサ による水質制御システム ~ 浄水場における実証試験(Ⅱ)~, 第54回水環境学会年会講演集, p.419 (2020)
- 15) 有村良一,黒川太,毛受卓,横山雄:画像処理型凝集センサ による水質制御システム ~ 浄水場における実証試験(Ⅲ)~, 令和2年度全国会議(水道研究発表会)講演集, pp.240-241 (2020)
- 16) 有村良一,黒川太,毛受卓,横山雄:画像処理型凝集センサ による水質制御システム ~ 浄水場における実証試験(IV) ~, 第55回水環境学会年会講演集, p.36 (2021)
- 17) 大島広行:基礎から学ぶゼータ電位とその応用,日本化学会 コロイドおよび界面化学部会,pp.64-71 (2017)
- 19) 丹保憲仁: 天然有機着色物質の凝集に関する電気泳動的研究, 水道協会雑誌, 508 号, pp. 38-50 (1977)
- 20) 日本水道協会:水道維持管理指針,7.3凝集用薬品設備,pp. 286-293 (2016)

A Novel Coagulant Dose Control Scheme using Image Recognition

Ryoichi Arimura^{1)†}, Takeshi Matsushiro¹⁾, Takashi Menju¹⁾ and Suguru Yokoyama²⁾

Infrastructure Systems R&D Center, Toshiba Infrastructure Systems and Solutions Corp.
 Social Systems Div., Toshiba Infrastructure Systems and Solutions Corp.

† Correspondence should be addressed to Ryoichi Arimura : (Infrastructure Systems R&D Center, Toshiba Infrastructure Systems and Solutions Corp. E-mail : ryoichi.arimura@toshiba.co.jp)

Abstract

This paper proposes a novel coagulant dose control scheme using an image recognition technique to optimize coagulant dosage at coagulation processes, and shows the experimental result of the control scheme at a municipal purification plant. The control scheme firstly measures an electrophoretic velocity of charged particles by an on-line sensor based on electrophoresis measurement method using an image recognition technique. Then the coagulant dosage is controlled by a feedback controller to track the prespecified control reference of an electrophoretic velocity. Experimental result at a municipal purification plant clarifies that, as compared to the conventional coagulant dose control, the coagulant dosage can significantly be reduced while keeping the same extent residual turbidity.

Key words : water treatment, coagulation, image recognition technique, feedback controller