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1 Introduction

Remote sensing is frequently used in for scientific ob-

servation for a variety of purposes including discovery 

and characterizing long-term trends.  It has rarely been 

used for real-time control and automation.  The reasons 

for not using remotely sensed data for control is more 

related to the nature of problems being managed and 

controlled than the applicability of the data.  As envi-

ronmental problems become more complex, more global 

and our needs for solutions increase, remotely sensed 

data and automation and control will be used together 

more frequently to solve these problems. It is the objec-

tive of this paper to review several sources for remotely 

sensed, environmental data and to show its emerging 

applications for automation and control.   

1.1 Background 

Remote sensing is the acquisition of information about 

some property of an object by a device that is not in 

physical contact with that object. In a technological set-

ting, remote sensing is usually related to data gained 

by sensors and instruments which measure emitted or 

reflected electromagnetic energy. The data can be for-

matted in a digital arrangement which can be evalu-

ated later with a computer to give valuable information 

(Sanchez and Canton, 1999). Indeed, many scientists in 

diverse disciplines have taken advantage of this tech-

nology to automate the acquisition of important pa-

rameters required for their modeling efforts. For exam-

ple, environmental engineers can detect impervious 

surfaces from satellite images to use as inputs to their 

 stormwater models. Usually, impervious surface is 

delineated from aerial photographs and field surveys, 

which is a long and tedious process. Remotely sensed 

environmental data can also be applied for controlling a 

system. For instance, a satellite image can show eroded 

areas or potential erosion sites. After efforts have been 

done to mitigate this situation, a satellite data of the 

same area with a more recent date can be assessed to 

determine if the land has been restored to a better state.  

Satellite remote sensing has been a viable technology 

for more than 30 years. The technology is continuing to 

be vigorously developed. At first, only a few countries, 

like the United States and the Soviet Union, were able 

to launch satellites into space. Recently, however, many 

other countries, for example, Korea and India, have 

begun their own space programs. Coarse resolution 

images were the first to be developed (e.g., Landsat 

MSS at 80 meter resolution). But now, with higher 

resolution data (e.g., IKONOS with 4 meter resolution), 

more objects of different composition can be identified 

on the earth’s surface. Spectral resolution has also im-

proved. In the past, only the visible bands (blue, green, 

red) were available, but now, the longer infrared bands 

can also be utilized. In addition, the range of the bands 

is narrower. This means that the sensor has more ca-

pability to distinguish an object. The overall advances 

in this technology have led to more applications in 

many different disciplines.  

This paper will present how remotely sensed environ-

mental data can be used for control and automation in 

several environmental applications. First, the concepts 

of remote sensing are reviewed. We introduce briefly 

how natural and man-made features interact with elec-

tromagnetic radiation and how the emitted or reflected 
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radiation is captured by a remote sensing system. Then, 

we present several applications in the environmental 

field. The application of remotely sensed data in 

stormwater management is discussed in more detail. 

1.2 Energy Interactions With Earth Surface Features 

When incident electromagnetic radiation or energy 

from the sun strikes an object on the surface of the 

earth, some of the radiation is absorbed, some is trans-

mitted, and the rest reflected. This incident radiation is 

of different types, depending on their position in the 

electromagnetic spectrum. Only some of these radiation 

types are used in remote sensing because some are 

scattered and/or absorbed by the particles in the at-

mosphere. Hence, only those in the atmospheric win-

dows, namely the blue (0.4-0.5 m), green (0.5-0.6 m), 

red (0.6-0.7 m), near infrared (NIR) (0.7-1.3 m), mid-

dle infrared (MIR) (1.3-3 m), thermal infrared (TIR) 

(beyond 3 m), and the microwave energy (1 mm to 1 

m) are utilized for remote sensing. For a particular sur-

face feature, different types of incident energy will re-

sult in different amounts of absorbed, transmitted, and 

reflected energy. Water, for example, reflects little blue, 

green, and red energy, and completely absorbs NIR. If 

the reflected energy in per cent is graphed against the 

wavelength of the energy, the result is called a spectral 

signature. The distinctive shapes of the spectral signa-

tures of earth surface materials provide the basis for 

the identification of their characteristics or properties 

(e.g., land cover, moisture content, biomass) (Lillesand 

and Kiefer, 1994).  

1.3 Sensor And Platform Characteristics 

The sensor and the platform together constitute a re-

mote sensing system. A passive remote sensing system 

utilizes the sun’s electromagnetic radiation, while an 

active remote sensing system supplies its own source of 

energy to illuminate earth surface features. Aboard a 

satellite, remote sensing devices electronically code ra-

diation in numeric format to produce a digital image. 

The most common sensing devices are the multi-

spectral scanners and the microwave sensors (Harrison 

and Jupp, 1989).  

The multi-spectral scanners utilize the visible, near 

infrared, middle infrared, and thermal infrared parts of 

the electromagnetic spectrum to obtain data. One wave-

length range (e.g., 0.4 - 0.5 m) corresponds to one band 

or channel (e.g., blue band). Multi-spectral scanners, 

which depend on natural illumination from the sun 

(passive system), operate in various ways. There are 

three types that are categorized according to the 

mechanism used by the sensor to view each pixel. Elec-

tromechanical scanners have a sensor which oscillates 

from side to side to form the image. In a linear array 

scanner, there is an array of detectors that sense the 

pixel values along a line simultaneously. While in a 

central perspective scanner, the sensing device does not 

move during data acquisition. Hence, the sensor views 

all pixels from the same central position. In this aspect, 

this sensor is similar to a photographic camera (Harri-

son and Jupp, 1989).   

The microwave sensors function between the wave-

lengths of about 1-1,000 mm.  These devices are em-

ployed in both active and passive systems. In active 

systems, like radar, the device not only supplies the 

energy but also detects the response from the features 

of interest. In the passive system, the earth sends out 

natural radio emission that the microwave devices can 

sense (Harrison and Jupp, 1989). 

Platforms carry the sensors that gather data. The most 

common platforms are aircraft and spacecraft.  Some of 

the multi-spectral scanners aboard an aircraft are the 

Airborne Thematic Mapper (ATM) which operates in 11 

wavelength bands or channels, the Thermal Infrared 

Multi-Spectral Scanner (TIMS) which utilizes six chan-

nels, and the Airborne Imaging Spectrometer (AIS), 

which uses 128 channels. Spacecraft can be manned or 

unmanned (Harrison and Jupp, 1989). Mercury, Gem-

ini, Apollo (launched in the 1960s), Skylab (1970s), and 

the Space Shuttle (1980s) are some of the manned 

spacecraft operated by the United States which took 

numerous images of the earth (Sanchez and Canton, 

1999).  

Unmanned spacecraft may be categorized into two gen-

eral groups: polar orbiting earth observation satellites 
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and geostationary meteorological satellites. Geostation-

ary satellites orbit at an altitude of about 36,000 km 

above the equator. They always view the same point on 

the earth’s surface. This is caused by the satellite’s cir-

cling around the earth with the same angular velocity 

as the earth’s rotation. Hence, the satellite views im-

ages of the same part of the earth at regular intervals 

(Harrison and Jupp, 1989). Some of the satellites that 

monitor the atmosphere covering the entire globe in-

clude Meteosat-2, INSAT 1B, GMS-3, GOES-6 (West), 

and GOES-7 (East) (Griersmith and Kingwell,1988).  

Polar-orbiting satellites invariably pass a specific lati-

tude at the same solar time. They cover regions be-

tween the latitudes 82  north and 82  south of the 

equator. Hence, they are called polar, sun-synchronous 

satellites. Their orbits in space can vary from 700 km to 

1,500 km from the surface of the earth. Because of the 

orbital characteristics of these satellites, the near global 

imaging of the earth’s surface can be done on a routine 

and predictable basis. The Landsat series of satellites 

have been the best-known satellites of this nature. Im-

agery that they acquire is also the most commonly util-

ized. But there are many other polar orbiters in space. 

One of these is the SPOT satellite which carries the 

multi-spectral (MSS) and panchromatic sensors. The 

MSS operates in three channels; the panchromatic, in 

one channel. Another example is the NOAA satellite 

which contains the AVHRR (four channels) and the 

AVHRR/2 (five channels). Another satellite, MOS-1, 

has three sensors, the MESSR (four channels), the 

VTIR (four channels), and the MSR (two channels) 

(Harrison and Jupp, 1989). 

2 Current Applications 

Because of the variety of sensors and platforms, re-

motely sensed data are regularly employed in many 

disciplines, including hydrology and water resources. 

For example, the snow water equivalent (SWE) of snow 

packs is important to estimate because snowmelt con-

tributes to runoff, sometimes significantly. Bernier and 

Fortin (1998) used the C-band of synthetic aperture 

radar (SAR) to calculate the SWE of snowpacks in a 

watershed in the Appalachian Mountains in Canada. 

They developed a model associating the scattering coef-

ficient to the physical characteristics of snow (e.g., 

depth, density, temperature) and underlying soil pa-

rameters (e.g., temperature, moisture). Because remote 

sensing can cover extensive areas, another parameter 

that can be efficiently calculated is soil moisture. Mar-

gulis et al. (2002) used the Electronically Scanned 

Thinned Array Radiometer (ESTAR) aboard the P3B 

aircraft to estimate surface soil moisture in central and 

eastern Oklahoma. To do this, they merged the satellite 

observations with data from ground stations (e.g., soil 

texture, vegetation type), and applied models with an 

ensemble Kalman filter. Drought and flooding have 

also been continually monitored by means of remote 

sensing data. For example, Birkett (2000) consulted 

satellite radar altimetry to determine changing water 

levels of Lake Chad in the Sahel region of Central Af-

rica and its tributaries. NOAA AVHRR data also pro-

vided additional information. Data showed that the 

lake is subject to both drought and flooding.  

Another field that significantly benefits from remote 

sensing technology is ecology. For example, habitat 

mapping is a task which is suitable with satellite data 

because it is closely associated with land cover mapping. 

The life requirements and reproductive success of spe-

cies are generally dependent on land cover. In addition, 

habitat maps cover large areas. Mumby and Edwards 

(2002) used different types of imageries to determine 

the most cost-effective data that can map various habi-

tats in clear, shallow water (e.g., coral, algae, seagrass). 

Because of its high resolution, textural information 

from the IKONOS image improved the classification. 

For coarse-level habitat mapping, however, Landsat 

TM yielded higher accuracies. Satellite remote sensing 

has also been extensively applied in coral reef man-

agement. Spencer et al. (2000) studied the relationship 

between coral bleaching in the southern Seychelles and 

sea surface temperatures measured by the NOAA 

AVHRR during a warming event of the Indian Ocean in 

1997-1998. They observed that the amounts of bleach-

ing are different in various locations, in different envi-

ronments at the within-reef scale, and in various coral 

growth types.  
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When news of global warming circulated, scientists in 

many fields began to gather proof of this phenomenon. 

Most of the investigations involving satellite data look 

at the evidences of global warming in terms of, for ex-

ample, rise in sea-level, or faster melting of snow packs. 

Masek (2001) predicted that boreal forest stands in two 

regions in northern Canada would extend because of a 

rise in temperatures. He worked on Landsat observa-

tions spanning 25 years. He concluded, however, that 

boreal forest has not shown this expansion. He sus-

pected a lag between forest stand reaction and global 

warming. It is also possible that the surrounding vege-

tation out competed the forest stands.  

Table 1 lists the papers just discussed and the high-

lights of their investigations. 

3 Stormwater Management 

 The objectives of stormwater management are to regu-

late runoff and optimize water quality. The tool that 

engineers and planners use to attain these goals is a 

stormwater model. A stormwater model requires a lot 

of parameters such as elevation, land use, and impervi-

ousness. These parameters are usually obtained from 

field surveys, aerial photographs, and other available 

analogue maps. However, these techniques are tedious 

and time-consuming. Remote sensing technology offers 

an efficient alternative to acquire some stormwater 

model input parameters. Below are some studies that 

extracted these critical parameters. Because of the 

large amount of data that has to be processed with sat-

ellite data, a geographic information system (GIS) is 

usually employed to store, retrieve, and analyze the 

data.  

The following studies are based on investigations con-

ducted on the same study area, which is a highly ur-

banized are in Los Angeles, the Marina del Rey area. 

Landsat ETM+ images were used in the studies. The 

resolution of 30 meters is sufficient for the particular 

application. It also has a high spectral resolution of 

seven bands. Hence, combination of bands can be cho-

sen to suit a particular purpose. It is also available to 

the public.  

3.1 Land Use 

Land use is a critical input parameter in stormwater 

modeling. The type of land use is associated with the 

generation of specific pollutants. For instance, oil and 

grease concentrations were larger in stormwater runoff 

in commercial areas and parking lots than in residen-

tial properties (Stenstrom et al., 1984). Land use is also 

indirectly associated with runoff rates and volumes. 

Certain types of land use have more impervious areas 

than others. For example, light industrial areas have 

much impervious surfaces like roofs and concrete. On 

the other hand, single-family residential areas have 

less impervious surfaces because of the presence of 

lawns. 

Application Parameter 
Extracted 

Resolution Platform Sensor Reference 

Snowmelt runoff 
estimation 

Snow water 
equivalent 

6 m Convair-580 
Aircraft 

SAR Bernier and 
Fortin (1998) 

Soil moisture estima-
tion

Soil moisture 800 m P3B Aircraft ESTAR Margulis et 
al. (2002) 

Drought/Flooding Water level 1.1 km at 
nadir 

NOAA AVHRR Birkett 
(2000)

Habitat mapping Land cover 4 m 
80 m 
30 m 
20 m 
10 m 
1 m 

IKONOS  
Landsat
Landsat
SPOT
SPOT
Aircraft 

Multispectral 
MSS 
TM
HRV (XS) 
HRV (Pan) 
CASI

Mumby and 
Edwards 
(2002)

Coral reef manage-
ment

Sea surface 
temperature 

1.1 km at 
nadir 

NOAA AVHRR Spencer et al. 
(2000)

Global warming Land cover 80 m 
30 m 

Landsat  
Landsat  

MSS 
ETM+

Masek (2001) 

Table 1: Some Applications of Environmental Remotely Sensed Data 
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Inputs
Outputs

Lee (2003) used various versions of neural networksto 

classify land use relevant to stormwater modeling. A

neural network is a system of interconnected neurons 

(Awad, 1996). In Fig. 1, neurons calculate the sum of 

the inputs with their associated weights. This value is 

compared to a threshold. If larger than the threshold, 

the neurons fire or produce an output. No signal is pro-

duced otherwise. This system is capable of learning. 

This happens when the neural network changes the 

weights and hence its course of action based on the in-

puts. Here, the inputs are the digital numbers (DNs) of 

each pixel. The DN is the digital equivalent of the ana-

logue reflected energy that the sensor captured for each 

pixel. The outputs are the land use classes of the pixels. 

Lee initially worked on the spectral information of the 

image, but later found that with the addition of ancil-

lary data, that are also inputs to the network, such as 

elevation and centroids of each pixel, the overall classi-

fication accuracy improved. 

3.2 Impervious Surface 

Impervious surface is another critical parameter in 

stormwater modeling. The amount of impervious sur-

face areas in a watershed increases the stormwater 

runoff. Large volumes of runoff can result to flooding, 

erosion, and habitat destruction. Therefore it is impor-

tant to know the overall imperviousness of a particular 

watershed. Knowing this, and knowing where these 

impervious surfaces are located, planners will be able to 

Yes No

Yes No

NoYes

Water

NDVI < 36

NDVI < 64

NDVI < 85

VegetationSoil

Impervious 

Surface  

know which best management practices are applicable 

at particular points in the watershed. 

Abellera and Stenstrom (2005, in press) applied knowl-

edge based systems to locate impervious surfaces in the 

study area. In a knowledge-based classification (Fig. 2),

land-cover classes are depicted as leaves of bi- or multi-

nary trees, with rules employed at every node to end or 

continue on a course of action (Jackson, 1999). Initial 

classifications were applied on a transformed image 

called the normalized difference vegetation index 

(NDVI = (NIR band – red band) / (NIR band + red 

band)). Further rules were created using the six raw 

bands. In the first stage of the classification, rules were 

based only on spectral information alone, (i.e., raw DNs 

and NDVI values.) With these, there were gross mis-

classifications of impervious surface areas inland to 

beach. Therefore, in the second stage of the classifica-

tion, ancillary data was added, in the form of a  buffer 

zone from the Pacific Ocean. This increased the classifi-

cation accuracy. With the addition of ancillary data, 

such as neighborhood information, the overall impervi-

ousness approached the overall impervious surface area 

calculated from public records. 

3.3 Pollutant Loadings 

Stormwater modeling aims to estimate the amount of 

pollutants received by a water body. To do this, one 

must know the event mean concentrations of particular 

pollutants, rainfall, and areas of specific land uses. 

Usually, pollutant loadings are indirectly calculated 

Fig. 2: Knowledge-based Classification Fig. 1: A Neural Network 
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from these parameters. However, Park and Stenstrom 

(2004) skipped on the land use part, and instead di-

rectly estimated the qualitative characteristics of pol-

lutant loadings to the Santa Monica Bay by applying 

Bayesian Networks. In this technique (Fig. 3), each 

node represents a variable. The arrows depict their de-

pendence relationship to each other. The relationships 

between the nodes can be measured and shown using a 

conditional probability table (Pearl, 1988). The main 

inputs to the model are the spectral information (e.g., 

B1 represents the DN value of the pixel in band 1, the 

blue band). However, pixel locations (X and Y) were 

also incorporated in the model. Although the locational 

ancillary data improved the classification, the addition 

of elevation (E) was not significant probably because 

the study area was relatively flat. The results of the 

classification indicated that the transportation class 

must be prioritized first because it has high emissions 

of COD (chemical oxygen demand), BOD5 (biochemical 

oxygen demand), TKN (total Kjeldahl nitrogen), and TP 

(total phosphorus). Alternatively, the open land use 

category shows the fewest pollution problems having 

only low emissions of COD, BOD5 , TKN, NO2&3 (nitrite 

and nitrate), TP, and SP (soluble phosphorus).  

4 Conclusions 

Tools used early by control engineers are now finding 

their way into earth science areas and environmental 

areas that rely heavily on remotely sensed data.  The 

combination of knowledge-based tools, control theory 

and remote sensing is a powerful tool to address many 

traditional and emerging environmental problems. De-

tecting the impacts of climate change and habitat loss 

are two obvious examples.  Managing non-point source 

pollution is another.   
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